首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Electron impact excitation cross sections of argon from the 3p 54s matastable states to the excited states of 3p 54p configuration were calculated by using the fully relativistic distorted wave method, based on the multi-configuration Dirac-Fock (MCDF) theory. The influence of electron correlation effects on cross sections were discussed in detail. For low energy impact, it is found that the electron correlation effects have a large influence on the cross sections and make the cross sections smaller. However, this influence become smaller with the increasing of incident electron energy. The present results are in good agreement with the experiments of Boffard et al. [Phys. Rev. A 59, 2749 (1999)] in most cases.  相似文献   

2.
Data on the cross sections for single-electron charge exchange and excitation in collisions of He+ ions with C5+, N6+, and O7+ ions in the He+ ion energy range of 0.2–3.0 MeV are obtained for the first time. The cross sections for the single-electron charge transfer into the singlet and triplet 1snl states of C4+, N5+, and O6+ (2≤n≤5) ions and for the 1s → 2p 0, ±1 electronic excitation of He+(1s) ions are calculated. The calculations were performed by solving close-coupling equations on the basis of ten two-electron quasi-molecular states.  相似文献   

3.
4.
The trielectronic recombination of an In+ (4d 105s 2 1 S 0) ion in collisions with slow electrons, including the two-electron excitation of the 5s2 core of the ion with the simultaneous capture of the triply excited 5p 3 intermediate autoionizing state with its subsequent radiative stabilization 5p 3 → 5s5p 2 + hν has been detected and experimentally examined for the first time. The maximum effective cross section of trielectronic recombination is 1.6 × 10−16 cm2, which is comparable to the effective cross sections for both dielectronic recombination and electron excitation of the In+ ion.  相似文献   

5.
The formation cross sections for about 110 products of interaction between a 12C ion beam of energy 2.2 GeV per nucleon and tin targets from the isotopes 112,118,120,124Sn were calculated. Massyield and charge distributions were obtained for 112,118,124Sn targets. An analysis of these charge distributions reveals that the positions of their maxima, Z p , are different for targets having different nucleon compositions. The formation cross sections for neutron-rich products originating from neutron-rich targets are found to increase in all product-mass regions considered in our study. Mass distributions are compared for proton-, deuteron- and ion-nucleus reactions.  相似文献   

6.
The photoionization cross sections for the 4p shell of ions of the Kr isoelectronic sequence Rb+, Sr2+, and Y3+ are calculated. The configuration interaction theory and the perturbation theory are used to describe the many-electron effects. The relativistic effects are taken into account in the Pauli-Fock approximation. The calculated resonance structure of photoionization cross sections for the 4p shell in the region below the 4s threshold associated with the autoionization of the 4s-np singly excited states and the 4p4p-nln′l′ doubly excited states reproduces the results of recent measurements of total photoabsorption cross sections for the Rb+, Sr2+, and Y3+ ions. It is found that, as the nuclear charge in the isoelectronic sequence increases, the ratio between the direct and correlation parts of amplitudes of the 4s-(n/?)p transition changes and, as the consequence, the minimum of the photoionization cross section of the 4s shell shifts from the continuous spectrum to the region of states of discrete spectrum. This accounts for the strong changes in the shape of the 4s-np resonances in the photoionization cross sections for the 4p shell of Rb+, Sr2+, and Y3+, as well as the distinction between the shapes of the 4s-6p 1/2 mirror resonance in the partial 4p 1/2 and 4p 3/2 photoionization cross sections for the Y3+ ion which do not suppress each other in the total photoionization cross section, as is the case for similar resonances in Rb+ and Sr2+.  相似文献   

7.
Time-of-flight mass spectroscopy methods are employed for studying processes occurring during capture of electrons by 3He2+ and Ar6+ multiply charged ions with energy 6z keV (z is the ion charge) from C2H n molecules (n = 2, 4, 6) with different multiplicities of C-C bonds. Fragmentation schemes of the molecular ions formed in such processes are established from analysis of correlations of recording times for all fragment ions. The absolute values of the cross sections of capture of an electron and capture with ionization are measured, as well as the cross sections of formation of fragment ions in these processes. The absolute values of total capture cross sections for several electrons are determined.  相似文献   

8.
H+ impact single and He2+ impact single and double electron capture cross sections of magnesium atoms have been calculated in the modified binary encounter approximation (BEA). The accurate expressions of ion impact sDE\sigma _{\Delta {E}} (cross section for energy transfer DE\Delta E) and Hartree-Fock momentum distributions of the target electrons have been used throughout the calculations. On the basis of the present work it is concluded that inner shell captures by H+ and He2+ ions incident on magnesium atoms contribute partly to single electron capture and partly to transfer ionization cross sections. The calculated He2+ impact double electron capture cross sections of magnesium are in reasonably good agreement with the experimental observations. This indicates the success of the present theoretical approach in study of charge transfer cross sections of atoms as indirect mechanisms do not interfere with double electron capture processes in this case.  相似文献   

9.
Differential cross sections and polarization observables for the elastic and inelastic scattering of 800-MeV protons on 16O and 20Ne nuclei are calculated on the basis of the theory of multiple diffractive scattering and the α-cluster model involving dispersion. The single-particle nucleon-density distributions obtained within the α-cluster model involving dispersion are used in the calculations. The differential cross sections and polarization calculated for elastic and inelastic p16O and p20Ne scattering are compatible with available experimental data. The spin-rotation functions calculated for elastic p16O and p20Ne scattering within the independent-nucleon model differ qualitatively from their counterparts calculated within the α-cluster model involving dispersion.  相似文献   

10.
The differential cross sections for p 10B scattering are calculated at the energies of 197, 600, and 1000 MeV within Glauber theory. The contributions of single and double collisions are taken into account in the multiple-scattering operator. The contributions of proton collisions with nucleons belonging to various (1s, 1p) shells are estimated in the single-scattering cross sections. A comparison with experimental data and with the result of calculations in the distorted-wave Born approximation (DWBA) at 197 MeV showed that the differential cross sections for p 10B scattering are adequately described in the region forward scattering angles.  相似文献   

11.
Observables of the elastic and inelastic scattering of 800- and 250-MeV protons on 20Ne and 24Mg nuclei were calculated on the basis of the theory of multiple diffractive scattering and the dispersive α-cluster model. The 20Ne and 24Mg nuclei were assumed to consist of a core (16O nucleus) and additional alpha-particle clusters, which could be situated with the highest probability both in the vicinity of the center of mass of the core and outside the core. The multiparticle densities of these nuclei and single-particle nucleon-distribution densities as obtained from the dispersive α-cluster model were used in the calculations. The differential cross sections and polarizations for elastic and inelastic p 20Ne and p 24Mg scattering at the energy of 800 MeV are in better agreement with experimental data than the analogous calculations at the energy of 250 MeV. The spin-rotation functions calculated in the singleparticle approximation for elastic p 20Ne and p 24Mg scattering at these two energy values differ qualitatively from their counterparts calculated on the basis of the dispersive α-cluster model.  相似文献   

12.
In this work, neutron knockout reactions of 15C on a 9Be target at energy 103 and 250 MeV/nucleon are studied. Using the Eikonal approximation of the Glauber model, total neutron removal cross sections, the stripping and diffractive cross sections as well as 14C longitudinal momentum distributions are determined in both 15C ground state and exited states of the wave function. We compared the results of our calculations with the available experimental data obtained recently. The calculated cross sections of 15C and 14C reactions, as well as the momentum distribution are in relatively good agreement with available data.  相似文献   

13.
Pioneering theoretical data for single-electron charge transfer and excitations due to collisions between Bi4+ ions in the ground (6s) and metastable (6p) states are gained in the collision energy interval 5–75 keV in the center-of-mass frame. The cross sections of the processes are calculated in terms of the close-coupling method in the basis of two-electron quasi-molecular states for the Coulomb trajectory of nuclei. It is found that single-electron capture into the singlet 6s 2 states of Bi3+ ions makes a major contribution to the charge transfer total cross section for Bi4+(6s) + Bi4+(6s) collisions (reaction 1), whereas single-electron capture into the singlet 6s6p states is the basic contributor to the total cross section in Bi4+(6s) + Bi4+(6p) collisions (reaction 2). In the collision energy interval mentioned above, the collision cross sections vary between 1.2 × 10?17 and 1.9 × 10?17 cm2 for reaction 1 and between 3.8 × 10?17 and 5.3 × 10?17 cm2 for reaction 2. In reaction 1, the 6s → 6p excitation cross sections vary from 0.6 × 10?16 to 0.8 × 10?16 cm2 for the singlet channel and from 2.2 × 10?16 to 2.8 × 10?16 cm2 for the triplet channel. The calculation results are compared with the data obtained in experiments with crossed ion beams of kiloelectronvolt energy. The fraction of metastable ions in the beams is estimated by comparing the experimental data with the weighted average theoretical results for the cross sections of reactions 1 and 2. From the data for the charge transfer cross sections, one can estimate particle losses in relativistic beams due to a change in the charge state of the ions colliding with each other in the beam because of betatron oscillations.  相似文献   

14.
In order to evaluate g 0, the interaction strength of a pair of 52Cr atoms with total spin S = 0, a specially designed s-wave scattering of the pair has been studied theoretically. Both the incident atom and the target atom trapped by a potential are polarized previously but in reverse directions. Due to spin-flips, the outgoing atom may have spin component μ ranging from −3 to 3. The outgoing channels are classified by μ. The effect of g 0 on the s-wave cross sections of each of these μ- channels has been predicted. In particular, when the parameters of the trapping potential are given around their optimal values so that the cross sections can be maximized, distinguished features of the dependence of the cross sections on g 0 are found. These features are helpful for evaluating g 0.  相似文献   

15.
Data are presented on the direct and effective, i.e., including the cascade population, electronic excitation cross sections of the 4p 55s levels of the krypton atom from its ground state by the electron impact. The data are made up of the results available in the literature on this process and the results of the measurements performed by the authors.  相似文献   

16.
The results of calculation of 63Cu + p differential cross sections at incident-proton energies between 10 and 200 MeV and a comparative analysis of these results are presented as a continuation of the earlier work of our group on developing methods for calculating the contribution of nuclear reactions to radiative effects arising in the onboard spacecraft electronics under the action of high-energy cosmic-ray protons on 63Cu nuclei (generation of single-event upsets) and as a supplement to the earlier calculations performed on the basis of the TАLYS code in order to determine elastic- and inelastic-scattering cross sections and charge, mass, and energy distributions of recoil nuclei (heavy products of the 63Cu + p nuclear reaction). The influence of various mechanisms of the angular distributions of particles emitted in the 63Cu + p nuclear reaction is also discussed.  相似文献   

17.
A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p 13C scattering at energies in the range 250–750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the 3 S 1 wave alone. A potential for the triplet 3 S 1-wave state of the p 13C system in the region of the J p T = 1−1 resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.  相似文献   

18.
The differential cross sections of proton elastic scattering from 8Li and 9Li nuclei in inverse kinematics have been calculated. The cross sections were determined within the Glauber diffraction theory with the wave functions of nuclei in the three-particle α-t-n, α-t-2n, and 7Li-n-n models. Comparison with the existing experimental data for E = 700 and 60 MeV/nucleon made it possible to draw a conclusion about the quality of the wave functions and the adequacy of the potentials used for their calculations.  相似文献   

19.
Absolute cross sections for electron-impact single ionization, dissociative excitation and dissociative ionization of the ethynyl radical ion (C2D+)^+) have been measured for electron energies ranging from the corresponding reaction thresholds to 2.5 keV. The animated crossed electron-ion beam experiment is used and results have been obtained for the production of C2D2+, C2+, C2+_2^+ , CD+, C+ and D+. The maximum of the cross section for single ionization is found to be (2.01 ± 0.02) × 10-17 cm2, at the incident electron energy of 105 eV. Absolute total cross sections for the various singly charged fragments production are observed to decrease by a factor of almost three, from the largest cross-section measured for C+, over C2+_2^+ and CD+ down to that of D+. The maxima of the cross sections are obtained to be (14.5 ± 0.5) × 10-17 cm2 for C2+_2^+, (12.1 ± 0.1) × 10-17 cm2 for CD+, (27.7 ± 0.2) × 10-17 cm2 for C+ and (11.1 ± 0.8) × 10-17 cm2 for D+. The smallest cross section is measured to be (1.50 ± 0.04) × 10-18 cm2 for the production of the doubly charged ion C2+. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic energy release distributions of dissociation fragments are seen to extend from 0 to 6 eV for the heaviest fragment C2+_2^+, up to 11.0 eV for CD+, 14.2 eV for C+ and 11.2 eV for D+ products.  相似文献   

20.
The total cross sections for 197Au and 203Tl fission induced by protons of energy varied from about 200 to 1000 MeV with a step of about 100 MeV are measured. New approximations to the energy dependences of the cross sections for the proton-induced fission of 197Au, 203Tl, natPb, and 209Bi nuclei are presented and discussed. For all of these nuclei, exponential functions are used as approximations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号