首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heterodimetallic cubane-type complexes coordinated to diphosphanes [Mo(3)CoS(4)(dmpe)(3)Cl(4)](+) ([1](+)) (dmpe=1,2-bis(dimethylphosphanyl)ethane), [Mo(3)CoS(4)(dmpe)(3)Cl(4)] (1) and [Mo(3)CoS(4)(dmpe)(3)Cl(3)(CO)] (2) with 14, 15 and 16 metal electrons, respectively, have been prepared from the [Mo(3)S(4)(dmpe)(3)Cl(3)](+) trinuclear precursor using [Co(2)(CO)(8)] or CoCl(2) as cobalt source. Cluster complexes [1](+) and 1 are easily interconverted chemically and electrochemically. The Co-Cl distance increases upon electron addition and substitution of the chlorine atom coordinated to cobalt with CO only takes place in presence of a reducing agent to give complex 2. Structural changes in the intermetallic distances agree with the entering electrons occupying an orbital which is basically Mo-Mo non-bonding and slightly Mo-Co bonding. Magnetic susceptibility measurements for [1](+) and 1 are consistent with the presence of two and one unpaired electrons, respectively and therefore with an "e" character for the HOMO orbital. Oxidation of 1 with TCNQ results in the formation of a charge transfer salt formulated as [1](+)[TCNQ](-) with alternate layers of paramagnetic cluster cations and also paramagnetic organic anions. There is no magnetic interaction between layers and the thermal variation of the magnetic susceptibility has been modelled as a S= 1/2 TCNQ antiferromagnetic chain plus a S=1 cluster monomer with zero field splitting.  相似文献   

2.
X-ray structural data for the cubane-type clusters [Mo3CuS4(dmpe)3Cl4](+) and Mo3NiS4(dmpe)3Cl4 (dmpe = 1,2-bis(dimethylphosphino)ethane) with 16 metal electrons have been compared with optimized structural parameters calculated using "ab initio" methodologies. Compound Mo3NiS4(dmpe)3Cl4 crystallizes in the cubic noncentrosymmetric space group P213 with a Mo-Ni distance of 2.647 Angstrom, that is 0.2 Angstrom shorter than the Mo-Cu bond length in the isoelectronic copper cluster. The best agreement between theory and experiments has been obtained using the B3P86 method. In order to validate the B3P86 results, accurate infrared and Raman spectra have been acquired and the vibrational modes associated to the cubane-type Mo3M'S4 (M' = Cu or Ni) unit have been assigned theoretically. The electronic changes taking place when incorporating the M' into the Mo3S4 unit have been analyzed from a theoretical and experimental perspective. The bond dissociation energies between M'-Cl and Mo3S4 fragments show that formation of [Mo3CuS4(dmpe)3Cl4](+) is 135 kcal/mol energetically less favorable than the Ni incorporation. The more robust nature of the Mo3NiS4 fragment has been confirmed by mass spectrometry. The X-ray photoelectron spectroscopy (XPS) spectra of the trimetallic and tetrametallic complexes have been measured and the obtained binding energies compared with the computed electronic populations based on topological approaches of the electron localization function (ELF). The energies and shapes of the Cu 2p and Ni 2p lines indicate formal oxidation states of Cu(I) and Ni(II). However, the reductive addition of nickel into [Mo3S4(dmpe)3Cl3](+) causes a small decrease in the Mo 3d binding energies. This fact prevents an unambiguous assignment of an oxidation state in a conventional way, a circumstance that has been analyzed through the covariance of the electronic populations associated to the C(M') core and V(Mo3Ni) and V(S(2)') valence basins where Mo3NiS4 is a particularly electronically delocalized chemical entity.  相似文献   

3.
The novel incomplete cuboidal cluster [W3Se4H3(dmpe)3](PF6), [1](PF6), has been prepared by reduction of [W3Se4Br3(dmpe)3](PF6) with LiBH4 in THF solution. The trihydroxo complex [W3Se4(OH)3(dmpe)3](PF6), [2](PF6), was obtained by reacting [W3Se4Br3(dmpe)3](PF6) with NaOH in MeCN-H2O solution. The complexes [1](PF6) and [2](PF6) were converted to their BPh4- salts by treatment with NaBPh4. Recrystallisation of [1](BPh4) in the presence of traces of water affords the mixed dihydride hydroxo complex [W3Se4H2(OH)(dmpe)3](BPh4). The crystal structures of [1](BPh4), [2](BPh4) and [W3Se4H2(OH)(dmpe)3](BPh4) have been resolved. Although the [1]+ trihydride does not react with an excess of halide salts, reaction with HX leads to [W3Se4X3(dmpe)3]+ (X = Cl, Br). The kinetics of this reaction has been studied at 25 degrees C in MeCN-H2O solution (1:1, v/v) and found to occur with two consecutive kinetic steps. The first step is independent of the nature and concentration of the X(-) anion but shows a first order dependence on the concentration of acid (k1 = 12.0 mol(-1) dm(3) s(-1)), whereas the second one is independent of the nature and concentration of both the acid and added salts (k2 = 0.024 s(-1)). In contrast, the reaction of [2]+ with acids occurs in a single step with kobs = 0.63 s(-1)(HCl) and 0.17 s(-1)(HBr). These kinetic results are discussed on the basis of the mechanism previously proposed for the reactions of the analogous [W3S4H3(dmpe)3]+ cluster, with special emphasis on the effects caused by the change of S by Se on the rate constants for the different processes involved.  相似文献   

4.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

5.
New Ni-containing heterometallic cuboidal cluster aqua complex [W3(NiCl)Se4(H2O)9]3+, the missing link in the family of the M3NiQ4 clusters (M = Mo, W; Q = S, Se), has been prepared by the reaction of [W3Se4(H2O)9]4+ with Ni in 2 M HCl. Single crystals of edge-linked double-cuboidal cluster [{W3NiSe4(H2O)9}2](pts)8.18H2O (pts = p-toluenesulfonate) were grown from the solution of the aqua complex in 3 M Hpts, and their structures were determined. The Ni site in the clusters [W3(NiCl)Q4(H2O)9]3+ selectively coordinates typical pi-acceptor ligands such as CO, olefins, acetylenes, phosphines, arsines, or SnCl3-. This allows stabilization by coordination of such elusive species as HP(OH)2 and As(OH)3. The stability constants for coordination of HP(OH)2, As(OH)3, and SnCl3- were determined. The Se for S substitution increases the stability by 1-2 orders of magnitude. Supramolecular adducts with cucurbit[6]uril (Cuc), [W3(Ni(HP(OH)2))Q4(H2O)9]Cl4.Cuc.11H2O and [W3(NiAs(OH)3)S4(H2O)8Cl]Cl3.Cuc.13H2O, were isolated and structurally characterized.  相似文献   

6.
Cluster excision of polymeric {Mo3S7Cl4}n phases with chiral phosphane (+)-1,2-bis[(2R,5R)-2,5-(dimethylphospholan-1-yl)]ethane ((R,R)-Me-BPE) or with its enantiomer ((S,S)-Me-BPE) yields the stereoselective formation of the trinuclear cluster complexes [Mo3S4{(R,R)-Me-BPE}3Cl3]+ ([(P)-1]+) and [Mo3S4{(S,S)-Me-BPE}3Cl3]+ ([(M)-1]+), respectively. These complexes possess an incomplete cuboidal structure with the metal atoms defining an equilateral triangle and one capping and three bridging sulfur atoms. The P and M symbols refer to the rotation of the chlorine atoms around the C3 axis, with the capping sulphur atom pointing towards the viewer. Incorporation of copper into these trinuclear complexes affords heterodimetallic cubane-type compounds of formula [Mo3CuS4{(R,R)-Me-BPE}3Cl4]+ ([(P)-2]+) or [Mo3CuS4{(S,S)-Me-BPE}3Cl4]+ ([(M)-2]+), respectively, for which the chirality of the trinuclear precursor is preserved in the final product. Cationic complexes [(P)-1]+, [(M)-1]+, [(P)-2]+, and [(M)-2]+ combine the chirality of the metal cluster framework with that of the optically active diphosphane ligands. The known racemic [Mo3CuS4(dmpe)3Cl4]+ cluster (dmpe = 1,2-bis(dimethylphosphanyl)ethane) as well as the new enantiomerically pure Mo3CuS4 [(P)-2]+ and [(M)-2]+ complexes are efficient catalysts for the intramolecular cyclopropanation of 1-diazo-5-hexen-2-one (3) and for the intermolecular cyclopropanation of alkenes, such as styrene and 2-phenylpropene, with ethyl diazoacetate. In all cases, the cyclopropanation products were obtained in high yields. The diastereoselectivity in the intermolecular cyclopropanation of the alkenes and the enantioselectivity in the inter- or intramolecular processes are only moderate.  相似文献   

7.
Majumdar A  Holm RH 《Inorganic chemistry》2011,50(21):11242-11251
An extensive series of heterometal-iron-sulfur single cubane-type clusters with core oxidation levels [MFe(3)S(3)Q](3+,2+) (M = Mo, W; Q = S, Se) has been prepared by means of a new method of cluster self-assembly. The procedure utilizes the assembly system [((t)Bu(3)tach)M(VI)S(3)]/FeCl(2)/Na(2)Q/NaSR in acetonitrile/THF and affords product clusters in 30-50% yield. The trisulfido precursor acts as a template, binding Fe(II) under reducing conditions and supplying the MS(3) unit of the product. The system leads to specific incorporation of a μ(3)-chalcogenide from an external source (Na(2)Q) and affords the products [((t)Bu(3)tach)MFe(3)S(3)QL(3)](0/1-) (L = Cl(-), RS(-)), among which are the first MFe(3)S(3)Se clusters prepared. Some 16 clusters have been prepared, 13 of which have been characterized by X-ray structure determinations including the incomplete cubane [((t)Bu(3)tach)MoFe(2)S(3)Cl(2)(μ(2)-SPh)], a possible trapped intermediate in the assembly process. Comparisons of structural and electronic features of clusters differing only in atom Q at one cubane vertex are provided. In comparative pairs of complexes differing only in Q, placement of one selenide atom in the core increases core volumes by about 2% over the Q = S case, sets the order Q = Se > S in Fe-Q bond lengths and Q = S > Se in Fe-Q-Fe bond angles, causes small positive shifts in redox potentials, and has an essentially nil effect on (57)Fe isomer shifts. Iron mean oxidation states and charge distributions are assigned to most clusters from isomer shifts. ((t)Bu(3)tach = 1,3,5-tert-butyl-1,3,5-triazacyclohexane).  相似文献   

8.
The triangular cluster [Mo3Se4(H2O)9]4+ reacts with Cu turnings to give a new heterometallic cuboidal cluster [Mo3CuSe4(H2O)10]4+(purple; UV/Vis lambda(epsilon): 352(3907), 509(2613)). The reaction of [Mo3Se4(H2O)9]4+ with CuCl afforded the 5+ cube [Mo3CuSe4(H2O)10]5+(red; UV/Vis lambda(epsilon): 356(5406), 500(3477)). In contrast, [W3Se4(H2O)9]4+ both with Cu and CuCl gives the 5+ cube, [W3CuSe4(H2O)10]5+(yellow-green; UV/Vis lambda(epsilon): 312(5327), 419(3256) and 628(680)). Cyclic voltammetry of [M3CuQ4(H2O)10]5+ in 2 M HCl (M = Mo, W; Q = S, Se) shows a reversible one-electron reduction wave for the Mo clusters, but no reduction occurs for the W clusters prior to H+ reduction. In HCl solutions, Cl is coordinated to the Cu site of the clusters, alongside some less extensive coordination to Mo and W, and for [W3(CuCl)S4(H2O)6Cl3]+, isolated as the supramolecular adduct with cucurbit[6]uril, [W3(CuCl)S4(H2O)6Cl3]2Cl2 x C36H36N24O12 x 12H2O, the crystal structure was determined (Cu-W 2.856(4) angstroms, W-W 2.7432(15) angstroms, Cu-Cl 2.167(13) angstroms).  相似文献   

9.
Hydrothermal reactions between incomplete cuboidal cluster aqua complexes [M3Q4(H2O)9]4+ and M(CO)6 (M = Mo, W; Q = S, Se) offer easy access to the corresponding cuboidal clusters M4Q4. The complete series of homometal and mixed Mo/W clusters [Mo(x)W4-xQ4(H2O)12]n+ (x = 0-4, n = 4-6) has been prepared. Upon oxidation of the mixed-metal clusters, it is the W atom which is lost, allowing selective preparation of new trinuclear clusters [Mo2WSe4(H2O)9]4+ and [MoW2Se4(H2O)9]4+. The aqua complexes were converted by ligand exchange reactions into dithiophosphato and thiocyanato complexes, and crystal structures of [W4S4((EtO)2PS2)6], [MoW3S4((EtO)2PS2)6], [Mo4Se4((EtO)2PS2)6], [W4Se4((i-PrO)2PS2)6], and (NH4)6[W4Se4(NCS)12]-4H20 were determined. Cyclic voltammetry was performed on [Mo(x)W4-xCO4(H2O)12]n+, showing reversible redox waves 6+/5+ and 5+/4+. The lower oxidation states are more difficult to access as the number of W atoms increases. The [Mo2WSe4(H2O)9]4+ and [MoW2Se4(H2O)9]4+ species were derivatized into [Mo2WSe4(acac)3(py)3]+ and [MoW2Se4(acac)3(py)3]+, which were also studied by CV. When appropriate, the products were also characterized by FAB-MS and NMR (31P, 1H) data.  相似文献   

10.
The reactions between chalcogen tetrahalides (ChX(4); Ch = Se, Te; X = Cl, Br) and the neutral donors (n)Bu(3)P, Ph(3)P, or the N-heterocyclic carbene, 2,5-diisopropylimidazole-2-ylidene ((i)Pr(2)IM), have been investigated. In cases involving a phosphine, the chemistry can be understood in terms of a succession of two-electron redox reactions, resulting in reduction of the chalcogen center (e.g., Se(IV) --> Se(II)) and the oxidation of phosphorus to the [R(3)P-X] cation (P(III) --> P(V)). The stepwise reduction of Se(IV) --> Se(II) --> Se(0) --> Se(-II) occurs upon the successive addition of stoichiometric equivalents of Ph(3)P to SeCl(4), which can readily be monitored by 31P{(1)H} NMR spectroscopy. In the case of reacting SeX(4) with (i)Pr(2)IM, a similar two-electron reduction of the chalcogen is observed and there is the concomitant production of a haloimidazolium hexahaloselenate salt. The products have been comprehensively characterized, and the solid-state structures of [R(3)PX][SeX(3)] (9), [Ph(3)PCl](2)[TeCl(6)] (10), (i)Pr(2)IM-SeX(2) (11), and [(i)Pr(2)IM-Cl](2)[SeCl(6)] (12) have been determined by X-ray diffraction analysis. These data all support two electron redox reactions and can be considered in terms of the formal reductive elimination of X2, which is sequestered by the Lewis base.  相似文献   

11.
The [Mo3S4Cl3(dhmpe)3]Cl ([1]Cl) cluster has been prepared from [Mo3S7Cl6]2- and the water-soluble 1,2-bis(bis(hydroxymethyl)-phosphino)ethane (dhmpe, L) ligand. The crystal structure has been determined by X-ray diffraction methods and shows the incomplete cuboidal structure typical of the M3Q4 clusters (M=Mo, W; Q=S, Se), with a capping sulfide ligand to the three metal centers and the other three sulfides acting as bridges between two Mo atoms. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of one L ligand. The chemistry of aqueous solutions of [1]Cl is dominated by the formation of the [Mo3S4L(L-H)2(H2O)]2+ complex ([2]2+), where the three chlorides have been replaced by one water molecule and two alkoxo groups of two different dhmpe ligands, thus leading to a solution structure where the three metal centers are not equivalent. A detailed study based on stopped-flow, 31P{1H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of [2]2+ in aqueous solution. In this way, it has been established that the addition of an excess of X- (Cl-, SCN-) leads to [Mo3S4X3(dhmpe)3]+ complexes in three resolved kinetic steps that correspond to the sequential coordination of X- at the three metal centers. However, whereas the first two steps involve the opening of the chelate rings formed with the alkoxo groups of the dhmpe ligands, the third one corresponds to the substitution of the coordinated water molecule. These results demonstrate that the asymmetry introduced by the closure of chelate rings at only two of the three Mo centers makes the kinetics of the reaction deviate significantly from the statistical behavior typically associated with M3Q4 clusters. The results obtained for the reaction of [2]2+ with acid and base are also described, and they complete the picture of the aqueous speciation of this cluster.  相似文献   

12.
The reaction of [Mo3S4(H2O)9]4+ (1) with hydrotris(pyrazolyl)borate (Tp) ligands produced [Mo3S4Tp3]Cl x 4 H2O ([3]Cl x 4 H2O) in an excellent yield. An X-ray structure analysis of [3]Cl x 4 H2O revealed that each molybdenum atom bonded to the Tp ligand. We report four salts of 3, [3]Cl x 4 H2O, [3]tof x 2 H2O, [3]PF6 x H2O, and [3]BF4 x 2 H2O in this paper. The solubility and stability of the chloride salt in organic solvents differ completely from those of the other salts. We have also prepared a new compound, [Mo3OS3Tp3]PF6 x H2O ([4]PF6 x H2O), via the reaction of [Mo3OS3(H2O)9]4+ (2) with KTp in the presence of NH4PF6. All the molybdenum atoms bonded to Tp ligand. 1H NMR signals corresponding to nine protons bonded to three pyrazole rings in one Tp were observed in a spectrum (at 253 K) of [3]BF4 x 2 H2O. It shows that cluster 3 has a 3-fold rotation axis in CD2Cl2 solution. Twenty-one 1H NMR signals corresponding to twenty-seven protons bonded to nine pyrazole rings in three Tp ligands were observed in a spectrum (at 233 K) of [4]PF6 x H2O; obviously, 4 has no 3-fold rotation axis, in contrast to 3. The short CH...mu3S distance caused large upfield chemical shifts in the 1H NMR spectra of 3 and 4. The reaction of 3 with metallic iron in CH2Cl2 produced [Mo3FeS4XTp3] (X = Cl (5), Br (6)). X-ray structure analysis of 5 has revealed the existence of a cubane-type core Mo3FeS4. Complex 3 functions as a metal-complex ligand for preparing a novel mixed-metal complex even in nonaqueous solvents. The cyclic voltammogram of 5 shows two reversible one-electron couples (E(1/2) = -1.40 and 0.52 V vs SCE) and two irreversible one-electron oxidation processes (E(pc) = 1.54 and 1.66 V vs SCE).  相似文献   

13.
Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)3, where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)3 (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[ t-Bu]Ar) 3 generating SPMo(N[t-Bu]Ar)3 has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)3 with SMo(N[t-Bu]Ar)3 yielding (mu-S)[Mo(N[t-Bu]Ar)3]2 have been studied, and yield activation parameters Delta H (double dagger) = 4.7 +/- 1 kcal/mol and Delta S (double dagger) = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)3]2 is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy3 is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis.  相似文献   

14.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

15.
The reaction of (Me3SiNSN)2S with TeCl4 in CH2Cl2 affords Cl2TeS2N2 (1) and that of (Me3SiNSN)2Se with TeCl4 produces Cl2TeSeSN2 (2) in good yields. The products were characterized by X-ray crystallography, as well as by NMR and vibrational spectroscopy and EI mass spectrometry. The Raman spectra were assigned by utilizing DFT molecular orbital calculations. The pathway of the formation of five-membered Cl2TeESN2 rings by the reactions of (Me3SiNSN)2E with TeCl4 (E = S, Se) is discussed. The reaction of (Me3SiNSN)2Se with [PPh4]2[Pd2X6] yields [PPh4]2[Pd2(mu-Se2N2S)X4] (X = Cl, 4a; Br, 4b), the first examples of complexes of the (Se2N2S)2- ligand. In both cases, this ligand bridges the two palladium centers through the selenium atoms.  相似文献   

16.
Reactions of rhenium chalcobromides Cs4[{Re6(mu3-S)8}Br6].2H2O, Cs3[{Re6(mu3-Se)8}Br6].2H2O, Cs3[{Re6(mu3-Q)7(mu3-Br)}Br6].H2O (Q = S, Se), and K2[{Re6(mu3-S)6(mu3-Br)2}Br6] with molten triphenylphosphine (PPh3) have resulted in a family of novel molecular hybrid inorganic-organic cluster compounds. Six octahedral rhenium cluster complexes containing PPh3 ligands with general formula [{Re6(mu3-Q)8-n(mu3-Br)n}(PPh3)4-nBrn+2] (Q = S, n = 0, 1, 2; Q = Se, n = 0, 1) have been synthesized and characterized by X-ray single-crystal diffraction and elemental analyses, 31P{1H} NMR, luminescent measurements, and quantum-chemical calculations. It was found that the number of terminal PPh3 ligands in the complexes is controlled by the composition and consequently by the charge of the cluster core {Re6Q8-nBrn}n+2. In crystal structures of the complexes with mixed chalcogen/bromine ligands in the cluster core all positions of a cube [Q8-nBrn] are ordered and occupied exclusively by Q or Br atoms. Luminescence characteristics of the compounds trans-[{Re6Q8}(PPh3)4Br2] and fac-[{Re6Se7Br}(PPh3)3Br3] (Q = S, Se) have been investigated in CH2Cl2 solution and the broad emission spectra in the range of 600-850 nm were observed.  相似文献   

17.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

18.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

19.
Enthalpies of oxidative addition of PhE-EPh (E = S, Se, Te) to the M(0) complexes M(PiPr3)2(CO)3 (M = Mo, W) to form stable complexes M(*EPh)(PiPr3)2(CO)3 are reported and compared to analogous data for addition to the Mo(III) complexes Mo(N[tBu]Ar)3 (Ar = 3,5-C6H3Me2) to form diamagnetic Mo(IV) phenyl chalcogenide complexes Mo(N[tBu]Ar)3(EPh). Reactions are increasingly exothermic based on metal complex, Mo(PiPr3)2(CO)3 < W(PiPr3)2(CO)3 < Mo(N[tBu]Ar)3, and in terms of chalcogenide, PhTe-TePh < PhSe-SePh < PhS-SPh. These data are used to calculate LnM-EPh bond strengths, which are used to estimate the energetics of production of a free *EPh radical when a dichalcogenide interacts with a specific metal complex. To test these data, reactions of Mo(N[tBu]Ar)3 and Mo(PiPr3)2(CO)3 with PhSe-SePh were studied by stopped-flow kinetics. First- and second-order dependence on metal ion concentration was determined for these two complexes, respectively, in keeping with predictions based on thermochemical data. ESR data are reported for the full set of bound chalcogenyl radical complexes (PhE*)M(PiPr3)2(CO)3; g values increase on going from S to Se, to Te, and from Mo to W. Calculations of electron densities of the SOMO show increasing electron density on the chalcogen atom on going from S to Se to Te. The crystal structure of W(*TePh)(PiPr3)2(CO)3 is reported.  相似文献   

20.
The highly unusual Mo(VI) thioether complexes [MoO(2)X(2)(L-L)][space](X = Cl or Br; L-L = MeS(CH(2))(2)SMe or EtS(CH(2))(2)SEt) were obtained by reaction of MoO(2)X(2) with L-L in rigorously anhydrous CH(2)Cl(2) solution. Similar reaction of MoO(2)Cl(2) with the diselenoether MeSe(CH(2))(2)SeMe gives the very reactive [MoO(2)Cl(2)[MeSe(CH(2))(2)SeMe]] as a yellow solid. These compounds are very moisture sensitive and were characterised by IR, diffuse reflectance UV-vis and multinuclear ((1)H, (13)C[(1)H], (77)Se and (95)Mo) NMR spectroscopy. The data are consistent with distorted 6-coordination at Mo(vi)viatrans X ligands, mutually cis oxo groups and a chelating dithio- or diseleno-ether ligand. Variable temperature (1)H and (13)C[(1)H] NMR data indicate fast pyramidal inversion at the coordinated chalcogen atoms occurs at room temperature, but cooling slows this process to reveal resonances consistent with the meso and dl forms. The (95)Mo NMR spectra are single resonances in the region 200-300 ppm, as expected for Mo(vi) complexes, and show inverse dependence of the chemical shifts upon both halide and chalcogen type. Crystal structures of three of the dithioether complexes are described and provide unequivocal evidence for Mo(vi) thioether coordination, confirming chelation of the dithioether through long Mo-S interactions of ca. 2.7 [Angstrom]. Attempts to extend the range of compounds by using other chalcogenoether ligands failed, indicating that to obtain complexes involving these extremely mis-matched metal ligand combinations requires both the favourable 5-membered chelate ring and small terminal alkyl substituents on the chalcogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号