首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
High-performance air-stable n-type field-effect transistors based on single-crystalline submicro- and nanometer ribbons of copper hexadecafluorophthalocyanine (F(16)CuPc) were studied by using a novel device configuration. These submicro- and nanometer ribbons were synthesized by a physical vapor transport technique and characterized by the powder X-ray diffraction pattern and selected area electron diffraction pattern of transmission electron microscopy. They were found to crystallize in a structure different from that of copper phthalocyanine. These single-crystalline submicro- and nanometer ribbons could be in situ grown along the surface of Si/SiO(2) substrates during synthesis. The intimate contact between the crystal and the insulator surface generated by the "in situ growing process" was free from the general disadvantages of the handpicking process for the fabrication of organic single-crystal devices. High performance was observed in devices with an asymmetrical drain/source (Au/Ag) electrode configuration because in such devices a stepwise energy level between the electrodes and the lowest unoccupied molecular orbital of F(16)CuPc was built, which was beneficial to electron injection and transport. The field-effect mobility of such devices was calculated to be approximately 0.2 cm(2) V(-)(1) s(-)(1) with the on/off ratio at approximately 6 x 10(4). The performances of the transistors were air stable and highly reproducible.  相似文献   

2.
We report the fabrication and extensive characterization of solid polymer electrolyte-gated organic field-effect transistors (PEG-FETs) in which a polyethylene oxide (PEO) film containing a dissolved Li salt is used to modulate the hole conductivity of a polymer semiconductor. The large capacitance (approximately 10 microF/cm2) of the solution-processed polymer electrolyte gate dielectric facilitates polymer semiconductor conductivities on the order of 103 S/cm at low gate voltages (<3 V). In PEG-FETs based on regioregular poly(3-hexylthiophene), gate-induced hole densities were 2 x 10(14) charges/cm2 with mobilities >3 cm2/V.s. PEG-FETs fabricated with gate electrodes either aligned or intentionally nonaligned to the channel exhibited dramatically different electrical behavior when tested in vacuum or in air. Large differences in ionic diffusivity can explain the dominance of either electrostatic charging (in vacuum) or bulk electrochemical doping (in air) as the device operational mechanism. The use of a larger anion in the polymer electrolyte, bis(trifluoromethanesulfonyl)imide (TFSI-), yielded transistors that showed clear current saturation and square law behavior in the output characteristics, which also points to electrostatic (field-effect) charging. In addition, negative transconductances were observed using the PEO/LiTFSI electrolyte for all three polymer semiconductors at gate voltages larger than -3 V. Bias stress measurements performed with PEO/LiTFSI-gated bottom contact PEG-FETs showed that polymer semiconductors can sustain high ON currents for greater than 10 min without large losses in conductance. Collectively, the results indicate that PEG-FETs may serve as useful devices for high-current/low-voltage applications and as testbeds for probing electrical transport in polymer semiconductors at high charge density.  相似文献   

3.
[1]Benzoselenopheno[3,2-b][1]benzoselenophene (BSBS) and its 2,7-diphenyl derivative (DPh-BSBS) were readily synthesized from diphenylacetylene and bis(biphenyl-4-yl)acetylene, respectively, with a newly developed straightforward selenocyclization protocol. In contrast to the parent BSBS that has poor film-forming properties, the diphenyl derivative DPh-BSBS formed a good thin film on the Si/SiO(2) substrate by vapor deposition. X-ray diffraction examination revealed that this film consists of highly ordered molecules that are nearly perpendicular to the substrate, making it suitable for use in the fabrication of organic field-effect transistors (OFETs). When fabricated at different substrate temperatures (room temperature, 60 degrees C, and 100 degrees C) in a "top-contact" configuration, all the DPh-BSBS-based OFET devices exhibited excellent p-channel field-effect properties with hole mobilities >0.1 cm(2) V(-1) s(-1) and current on/off ratios of approximately 10(6). This high performance was essentially maintained over 3000 continuous scans between V(g) = +20 and -100 V and reproduced even after storage under ambient laboratory conditions for at least one year.  相似文献   

4.
Organic thin film field-effect transistors (OTFTs) with mobility up to 1.0 cm2 V(-1) s(-1) and on/off ratio of 10(6)-10(8) as well as good environmental stability were demonstrated by using vanadyl phthalocyanine (VOPc), a pyramid-like compound with an ultra closely pi-stacked structure. The high performance, remarkable stability, low price, easy availability and nontoxicity of VOPc enabled it to be a promising candidate for OTFTs. Furthermore, we found that the mobility of the devices on OTS-modified Si/SiO2 substrates was 2 orders of magnitude higher than that of devices on Si/SiO2 substrates. Significantly, the relationship between field effect property and insulator surface property was explained from two new aspects of distribution of molecular orientation and interface compatibility, which might provide not only a useful model to explain why the surface modification with OTS could largely improve the field-effect performance but also a guide for rational optimization of device structure for higher performance. In addition, the field effect property of VOPc devices under vacuum, i.e., the oxygen doping effect on the VOPc devices, was measured. We found that the hole mobility decreased by several orders of magnitude with decreasing pressure. At a pressure below 10(-2) Pa, the device on OTS-modified substrates exhibited ambipolar conduction. These results indicated that the oxygen doping exerted essential effect on the field-effect property of VOPc, which was clearly distinct from that observed for pentacene-based OFETs.  相似文献   

5.
A series of oligothiophenes containing difluorodioxocyclopentene-annelated thiophene units was synthesized, and their electronic properties and structures were investigated by spectroscopic and electrochemical measurements and X-ray analyses. The oligothiophenes having the terminal difluorodioxocyclopentene annelations showed n-type semiconducting behavior on FET devices, and the quaterthiophene revealed field-effect electron mobility as high as 1.3 x 10(-2) cm2 V(-1) s(-1).  相似文献   

6.
A series of 2,6-diaryl-substituted naphtho[1,8-bc:5,4-b'c']dithiophene derivatives 2-6, whose aryl groups include 5-hexyl-2-thienyl, 2,2'-bithiophen-5-yl, phenyl, 2-naphthyl, and 4-biphenylyl, was synthesized by the palladium-catalyzed Suzuki-Miyaura coupling and utilized as active layers of organic field-effect transistors (OFETs). All devices fabricated using vapor-deposited thin films of these compounds showed typical p-type FET characteristics. The mobilities are relatively good and widely range from 10(-4) to 10(-1) cm2 V(-1) s(-1), depending on the substituent groups. Among them, the mobilities of the devices using films of 3-5 tend to increase with the increasing temperature of the Si/SiO2 substrate during film deposition. In particular, the device based on the naphthyl derivative 5, when fabricated at 140 degrees C, marked a high mobility of 0.11 cm2 V(-1) s(-1) with an on/off ratio of 10(5), which is a top class of performance among organic thin-film transistors. Studies of X-ray diffractograms (XRDs) have revealed that the film of 4 and 5 is composed of two kinds of crystal grains with different phases, so-called "single-crystal phase" and "thin film phase", and that the proportion of the thin film phase increases with an increase of the substrate temperature. In the thin film phase the assembled molecules stand nearly upright on the substrate in such a way as to be favorable to carrier migration.  相似文献   

7.
Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ~10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ~10(-3) and ~10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).  相似文献   

8.
Two conjugated polymers, IIDDT and IIDT, based on an isoindigo core were developed for organic field-effect transisitors. Investigation of their field-effect performance indicated that IIDDT exhibited air-stable mobility up to 0.79 cm(2) V(-1) s(-1), which is quite high among polymer FET materials. The facile preparation and high mobility of such polymers make isoindigo-based polymers very promising for application as solution-processable organic semiconductors for optoelectronic devices.  相似文献   

9.
Heteroaromatic oligomer 5,7,12,14-tetrachloro-6,13-diazapentacene (TCDAP) was characterized and assessed as n-channel material in field-effect transistor applications. A single-crystal transistor based on TCDAP as the channel material exhibits a very high electron mobility of 3.39 cm(2) V(-1) s(-1) and an on/off ratio of ~1.08 × 10(4) respectively.  相似文献   

10.
Solution-processed In(2)O(3) thin-film transistors (TFTs) were fabricated by a spin-coating process using a metal halide precursor, InCl(3), dissolved in acetonitrile. A thin and uniform film can be controlled and formed by adding ethylene glycol. The synthesized In(2)O(3) thin films were annealed at various temperatures ranging from 200 to 600 °C in air or in an O(2)/O(3) atmospheric environment. The TFTs annealed at 500 °C under air exhibited a high field-effect mobility of 55.26 cm(2) V(-1) s(-1) and an I(on)/I(off) current ratio of 10(7). In(2)O(3) TFTs annealed under an O(2)/O(3) atmosphere at temperatures from 200 to 300 °C exhibited excellent n-type transistor behaviors with field-effect mobilities of 0.85-22.14 cm(2) V(-1) s(-1) and I(on)/I(off) ratios of 10(5)-10(6). The annealing atmosphere of O(2)/O(3) elevates solution-processed In(2)O(3) TFTs to higher performance at lower processing temperature.  相似文献   

11.
Structural and electronic criteria for ambient stability in n-type organic materials for organic field-effect transistors (OFETs) are investigated by systematically varying LUMO energetics and molecular substituents of arylene diimide-based materials. Six OFETs on n+-Si/SiO2 substrates exhibit OFET response parameters as follows: N,N'-bis(n-octyl)perylene-3,4:9,10-bis(dicarboximide) (PDI-8): mu = 0.32 cm2 V(-1) s(-1), Vth = 55 V, I(on)/I(off) = 10(5); N,N'-bis(n-octyl)-1,7- and N,N'-bis(n-octyl)-1,6-dibromoperylene-3,4:9,10-bis(dicarboximide) (PDI-8Br2): mu = 3 x 10(-5) cm2 V(-1) s(-1), Vth = 62 V, I(on)/I(off) = 10(3); N,N'-bis(n-octyl)-1,6,7,12-tetrachloroperylene-3,4:9,10-bis(dicarboximide) (PDI-8Cl4): mu = 4 x 10(-3) cm2 V(-1) (s-1), Vth = 37 V, I(on)/I(off) = 10(4); N,N'-bis(n-octyl)-2-cyanonaphthalene-1,4,5,8-bis(dicarboximide) (NDI-8CN): mu = 4.7 x 10(-3) cm2 V(-1) s(-1), Vth = 28, I(on)/I(off) = 10(5); N,N'-bis(n-octyl)-1,7- and N,N'-bis(n-octyl)-1,6-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2): mu = 0.13 cm2 V(-1) s(-1), Vth = -14 V, I(on)/I(off) = 10(3); and N,N'-bis(n-octyl)-2,6-dicyanonaphthalene-1,4,5,8-bis(dicarboximide) (NDI-8CN2): mu = 0.15 cm2 V(-1) s(-1), Vth = -37 V, I(on)/I(off) = 10(2). Analysis of the molecular geometries and energetics in these materials reveals a correlation between electron mobility and substituent-induced arylene core distortion, while Vth and I(off) are generally affected by LUMO energetics. Our findings also indicate that resistance to ambient charge carrier trapping observed in films of N-(n-octyl)arylene diimides occurs at a molecular reduction potential more positive than approximately -0.1 V (vs SCE). OFET threshold voltage shifts between vacuum and ambient atmosphere operation suggest that, at E(red1) < -0.1 V, the interfacial trap density increases by greater than approximately 1 x 10(13) cm(-2), while, for semiconductors with E(red1) > -0.1 V, the trap density increase is negligible. OFETs fabricated with the present n-type materials having E(red1) > -0.1 V operate at conventional gate biases with minimal hysteresis in air. This reduction potential corresponds to an overpotential for the reaction of the charge carriers with O2 of approximately 0.6 V. N,N'-1H,1H-Perfluorobutyl derivatives of the perylene-based semiconductors were also synthesized and used to fabricate OFETs, resulting in air-stable devices for all fluorocarbon-substituted materials, despite generally having E(red1) < -0.1 V. This behavior is consistent with a fluorocarbon-based O2 barrier mechanism. OFET cycling measurements in air for dicyanated vs fluorinated materials demonstrate that energetic stabilization of the charge carriers results in greater device longevity in comparison to the OFET degradation observed in air-stable semiconductors with fluorocarbon barriers.  相似文献   

12.
We report the synthesis, crystal structure, and magnetic, electrochemical, and carrier-transport properties of vanadyl tetrakis(thiadiazole)porphyrazine (abbreviated as VOTTDPz) with S = ?. X-ray crystal analysis reveals two polymorphs, the α and β forms; the former consists of a 1D regular π stacking, while the latter forms a 2D π network. Molecular orbital calculations suggest a V(4+)(d(1)) ground state and a characteristic spin polarization on the whole molecular skeleton. The temperature dependence of the paramagnetic susceptibility of the α form clearly indicates a ferromagnetic interaction with a positive Weiss constant of θ = 2.4 K, which is well-explained by McConnell's type I mechanism. VOTTDPz forms amorphous thin films with a flat and smooth surface, and their cyclic voltammogram curves indicate a one-electron reduction process, which is highly electrochromic, because of a reduction of the porphyrazine π ring. Thin-film field-effect transistors of VOTTDPz with ionic-liquid gate dielectrics exhibit n-type performance, with a high mobility of μ = 2.8 × 10(-2) cm(2) V(-1) s(-1) and an on/off ratio of 10(4), even though the thin films are amorphous.  相似文献   

13.
We report the synthesis, characterization, and application of a novel series of diketopyrrolopyrrole (DPP)-containing quinoidal small molecules as highly efficient n-type organic semiconductors in thin film transistors (TFTs). The first two representatives of these species exhibit maximum electron mobility up to 0.55 cm(2) V(-1) s(-1) with current on/current off (I(on)/I(off)) values of 10(6) for 1 by vapor evaporation, and 0.35 cm(2) V(-1) s(-1) with I(on)/I(off) values of 10(5)-10(6) for 2 by solution process in air, which is the first demonstration of DPP-based small molecules offering only electron transport characteristics in TFT devices. The results indicate that incorporation of a DPP moiety to construct quinoidal architecture is an effective approach to enhance the charge-transport capability.  相似文献   

14.
The synthesis of two well-solubilized [60]methanofullerene derivatives ( p- EHO-PCBM and p- EHO-PCBA) is presented for usage in organic solar cells and in field-effect transistors. The para position of the PCBM's phenyl ring was substituted with a branched alkoxy side chain, which contributes to higher solubility, facilitating synthesis, purification, and processing. We find a small change of the open-circuit voltage ( V oc) as a slight improvement in performance upon application in P3HT/[60]methanofullerene bulk-heterojunction-photovoltaic cells, when compared to PCBM, because of the electron donation of the alkoxy group. In the case of the devices with a TiO x layer, the best power conversion efficiencies (PCE, eta e) is observed in a layered structure of P3HT/ p- EHO-PCBA/TiO x (eta e = 2.6%), which slightly exceeds that of P3HT/PCBM/TiO x (eta e = 2.3%) under conditions reported here. This can be attributed, in part, to the carboxylic acid group in p- EHO-PCBA that leads to an effective interface interaction between the active layer and TiO x phase. In addition, n-channel organic field-effect transistor (OFET) devices were fabricated with thin films of p- EHO-PCBM and p- EHO-PCBA, respectively cast from solution on SiO 2/Si substrates. The values of field-effect mobility (mu) for p- EHO-PCBM and p- EHO-PCBA are 1 x 10 (-2) and 1.6 x 10 (-3) cm (2)/V.s, respectively. The results in this paper demonstrate the effects of a carboxylic acid group and an electron-donating substituent in [60]methanofullerenes as n-type materials with respect to organic solar cells and OFET applications.  相似文献   

15.
A novel concept for electroosmotic flow (EOF) control in a microfluidic chip is presented by using a self-assembled monolayer as the insulator of a flow field-effect transistor. Bidirectional EOF control with mobility values of 3.4 × 10(-4) and -3.1 × 10(-4) cm(2)/V s can be attained, corresponding to the applied gate voltage at -0.8 and 0.8 V, respectively, without the addition of buffer additives. A relatively high control factor (approximately 400 × 10(-6) cm(2)/V(2) s) can be obtained. The method presented in this study offers a simple strategy to control the EOF.  相似文献   

16.
We report the metal-catalyst-free synthesis of high-quality polycrystalline graphene on dielectric substrates [silicon dioxide (SiO(2)) or quartz] using an oxygen-aided chemical vapor deposition (CVD) process. The growth was carried out using a CVD system at atmospheric pressure. After high-temperature activation of the growth substrates in air, high-quality polycrystalline graphene is subsequently grown on SiO(2) by utilizing the oxygen-based nucleation sites. The growth mechanism is analogous to that of growth for single-walled carbon nanotubes. Graphene-modified SiO(2) substrates can be directly used in transparent conducting films and field-effect devices. The carrier mobilities are about 531 cm(2) V(-1) s(-1) in air and 472 cm(2) V(-1) s(-1) in N(2), which are close to that of metal-catalyzed polycrystalline graphene. The method avoids the need for either a metal catalyst or a complicated and skilled postgrowth transfer process and is compatible with current silicon processing techniques.  相似文献   

17.
The synthesis, characterization, and field-effect transistor (FET) properties of new indolo[3,2-b]carbazoles are described. In particular, an extensive characterization of their crystal structures has revealed the importance of the nature of the side chains (alkyl, phenyl, thienyl substituents) on their solid-state organization. These organic materials have exhibited p-type FET behavior with hole mobilities as high as 0.2 cm2 V(-1) s(-1) with an on/off current ratio higher than 10(6). Best results were obtained with phenyl-substituted indolo[3,2-b]carbazoles since the presence of phenyl substituents seems to allow efficient overlap between the oligomeric molecules. More importantly, FET properties were kept constant during several months in air.  相似文献   

18.
The surface properties of microfluidic devices play an important role in their flow behavior. We report here on an effective control of the surface chemistry and performance of polymeric microchips through a bulk modification route during the fabrication process. The new protocol is based on modification of the bulk microchip material by tailored copolymerization of monomers during atmospheric-pressure molding. A judicious addition of a modifier to the primary monomer solution thus imparts attractive properties to the plastic microchip substrate, including significant enhancement and/or modulation of the EOF (with flow velocities comparable to those of glass), a strong pH sensitivity and high stability. Carboxy, sulfo, and amino moieties have thus been introduced (through the incorporation of methylacrylic acid, 2-sulfoethyl-methacrylate and 2-aminoethyl-methacrylate monomers, respectively). A strong increase in the electroosmotic pumping compared to the native poly(methylmethacrylate)(PMMA) microchip (ca. electroosmotic mobility increases from 2.12 to 4.30 x 10(-4) cm(2) V(-1) s(-1)) is observed using a 6% methylacrylate (MAA) modified PMMA microchip. A 3% aminoethyl modified PMMA microchip exhibits a reversal of the electroosmotic mobility (for example, -5.6 x 10(-4) cm(2) V(-1) s(-1) at pH 3.0). The effects of the modifier loading and the pH on the EOF have been investigated for the MAA-modified PMMA chips. The bulk-modified devices exhibit reproducible and stable EOF behavior. The one step fabrication/modification protocol should further facilitate the widespread production of high-performance plastic microchip devices.  相似文献   

19.
The synthesis and physicochemical properties of a new class of thiophene/arenesilole-containing pi-conjugated polymers are reported. Examples of this new polymer class include the following: poly(2,5-bis(3',3' '-dihexylsilylene-2',2' '-bithieno)thiophene) (TS6T1), poly(2,5'-bis(3' ',3' '-dihexylsilylene-2' ',2' '-bithieno)bithiophene) (TS6T2), poly(2,5'-bis(2' ',2' '-dioctylsilylene-1' ',1' '-biphenyl)thiophene) (BS8T1), and poly(2,5'-bis(2' ',2' '-dioctylsilylene-1' ',1' '-biphenyl)bithiophene) (BS8T2). Organic field-effect transistors (OFETs) with hole carrier mobilities as high as 0.02-0.06 cm2/V s in air, low turn-on voltages, and current on/off ratios >105-106 are fabricated using solution processing techniques with the above polymers as the active channel layer. OFETs based on this polymer class exhibit excellent ambient operational stability.  相似文献   

20.
Herein, we report a new family of naphthaleneamidinemonoimide-fused oligothiophene semiconductors designed for facile charge transport in organic field-effect transistors (OFETs). These molecules have planar skeletons that induce high degrees of crystallinity and hence good charge-transport properties. By modulating the length of the oligothiophene fragment, the majority carrier charge transport can be switched from n-type to ambipolar behavior. The highest FET performance is achieved for solution-processed films of 10-[(2,2'-bithiophen)-5-yl]-2-octylbenzo[lmn]thieno[3',4':4,5]imidazo[2,1-b][3,8]phenanthroline-1,3,6(2H)-trione (NDI-3 Tp), with optimized film mobilities of 2×10(-2) and 0.7×10(-2) cm(2) V(-1) s(-1) for electrons and holes, respectively. Finally, these planar semiconductors are compared with their twisted-skeleton counterparts, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号