首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Performance of dye-sensitized solar cells (DSCs) was investigated depending on the compositions of the electrolyte, i.e., the electrolyte with a different cation such as Li(+), tetra-n-butylammonium (TBA(+)), or 1,2-dimethyl-3-propylimidazolium (DMPIm(+)) in various concentrations, with and without 4-tert-butylpyridine (tBP), and with various concentrations of the I(-)/I(3)(-) redox couple. Current-voltage characteristics, electron lifetime, and electron diffusion coefficient were measured to clarify the effects of the constituents in the electrolyte on the charge recombination kinetics in the DSCs. Shorter lifetimes were found for the DSCs employing adsorptive cations of Li(+) and DMPIm(+) than for a less-adsorptive cation of TBA(+). On the other hand, the lifetimes were not influenced by the concentrations of the cations in the solutions. Under light irradiation, open-circuit voltages of DSCs decreased in the order of TBA(+)> DMPIm(+) > Li(+), and also decreased with the increase of [Li(+)]. The decreases of open-circuit voltage (V(oc)) were attributed to the positive shift of the TiO(2) conduction band potential (CBP) by the surface adsorption of DMPIm(+) and Li(+). These results suggest that the difference of the free energies between that of the electrons in the TiO(2) and of I(3)(-) has little influence on the electron lifetimes in the DSCs. The shorter lifetime with the adsorptive cations was interpreted with the thickness of the electrical double layer formed by the cations, and the concentration of I(3)(-) in the layer, i.e., TBA(+) formed thicker double layer resulting in lower concentration of I(3)(-) on the surface of the TiO(2). The addition of 4-tert-butylpyridine (tBP) in the presence of Li(+) or TBA(+) showed no significant influence on the lifetime. The increase of V(oc) by the addition of tBP into the electrolyte containing Li(+) and the I(-)/I(3)(-) redox couple was mainly attributed to the shift of the CBP back to the negative potential by reducing the amount of adsorbed Li cations.  相似文献   

2.
Montmorillonite (MMT) added to electrolytes has been reported in the literature to facilitate the transport of I(-)/I(3)(-), and improve the ionic conductivity and consequent photocurrent of dye-sensitized solar cells (DSCs). This paper firstly observes, investigates and reports that MMT addition to a poly(ethylene oxide) (PEO)-based gel electrolyte not only improves the ionic conductivity of the gel electrolyte, but also increases the photovoltage and decreases the dark current. From the results of electrochemical impedance spectroscopy (EIS) and transient photovoltage spectra, we evidence that MMT in the polymer gel electrolyte can efficiently retard the charge recombination that occurs at the TiO(2)/dye/electrolyte interfaces.  相似文献   

3.
Dye-sensitized solar cells (DSC) were prepared from nanoporous TiO(2) electrodes with two different cobalt complex redox couples, propylene-1,2-bis(o-iminobenzylideneaminato)cobalt(II) {Co(II)(abpn)} and tris(4,4'-di-tert-buthyl-2,2'-bipyridine)cobalt(II) diperchlorate {Co(II)(dtb-bpy)(3)(ClO(4))(2)}. The performances of the DSCs were examined with varying the concentrations of the redox couples and Li cations in methoxyacetonitrile. Under 1 sun conditions, short-circuit currents (J(sc)) increased with the increase of the redox couple concentration, and the maximum J(sc) was found at the Li(+) concentration of 100 mM. To rationalize the observed trends of J(sc), electron diffusion coefficients and lifetimes in the DSCs were measured. Electron diffusion coefficients in the DSCs using cobalt complexes were comparable to the previously reported values of nanoporous TiO(2). Electron lifetime was independent of the concentration of the redox couples when the concentration ratio of Co(II)(L) and Co(III)(L) was fixed. With the increase of Li(+) concentration, the electron lifetime increased. These results were interpreted as due to their slow charge-transfer kinetics and the cationic nature of Co complex redox couples, in contrast to the anionic redox couple of I(-)/I(3)(-). The increase of the lifetimes with Li(+) was interpreted with the decrease of the local concentration of Co(III) near the surface of TiO(2). The addition of 4-tert-butylpyridine (tBP) with the presence of Li(+) increased J(sc) significantly. The observed increase of the electron lifetime by tBP could not explain the large increase of J(sc), implying that tBP facilitates the charge transfer from Co(II)(L) to dye cation, with the association of the change of the reorganization energy between Co(II) and Co(III).  相似文献   

4.
Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.  相似文献   

5.
A new I(-)/(SeCN)(2) redox mediator has favorable properties for dye-sensitized solar cells (DSCs) such as less visible light absorption, higher ionic conductivity, and downward shift of redox potential than I(-)/I(3)(-). It was then applied for DSCs towards increasing energy conversion efficiency, giving a new potential for improving performance.  相似文献   

6.
This paper describes the influence of acid pretreatment ofTiO2 mesoporous films prior to dye sensitization on the performance of dye-sensitized solar cells based on [(C4H9)4N]3[Ru(Htcterpy)(NCS)3] (tcterpy = 4,4',4"-tricarboxy- 2,2',2"-terpyridine), the so-called black dye. The HCl pretreatment caused an increase in overall efficiency by 8%, with a major contribution from photocurrent improvement. It is speculated, from the analysis of incident photon-to-electron conversion efficiency, UV-vis absorption spectra, redox properties of the dye and TiO2, and the impedance spectra of the dye-sensitized solar cells, that photocurrent enhancement is attributed to the increases in electron injection and/or charge collection efficiency besides the improvement of light harvesting efficiency upon HCl pretreatment. Open-circuit photovoltage (V(oc)) remained almost unchanged in the case of significant positive shift of flat band potential for TiO2 upon HCl pretreatment. The suppression of electron transfer from conduction band electrons to the I3- ions in the electrolyte upon HCl pretreatment, reflected by the increased resistance at the TiO2/dye/electrolyte interface and reduced dark current, resulted in a V(oc) gain, which compensated the V(oc) loss due to the positive shift of the flat band. Using the HCl pretreatment approach, 10.5% of overall efficiency with the black dye was obtained under illumination of simulated AM 1.5 solar light (100 mW cm(-2)) using an antireflection film on the cell surface.  相似文献   

7.
二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对四种二氢吲哚染料进行研究, 从中筛选出相对优秀的染料敏化太阳能电池光敏剂. 对前线分子轨道的计算表明, 二氢吲哚染料的前线分子轨道结构非常有利于染料激发态向TiO2电极的电子注入. 对真空中的紫外和可见光吸收光谱的计算表明, 二氢吲哚染料的吸收光谱与太阳辐射光谱匹配较好. 对染料分子的能级计算表明, 二氢吲哚染料的能级结构比较适合于I-/I-3作电解液的TiO2纳米晶太阳能电池的光敏剂. 二氢吲哚染料最低未占据分子轨道(LUMO) 能级均比TiO2晶体导带边能级高, 能够保证激发态染料分子高效地向TiO2电极转移电子. 二氢吲哚染料最高占据分子轨道(HOMO)的能级比I-/I-3能级低, 保证了失去电子的染料分子能够顺利地从电解液中得到电子. 与实验数据比较, 得出在提高染料敏化太阳能电池转换效率方面, 对染料的关键要求是LUMO能级的位置. 染料分子的稳定性是染料敏化太阳能电池使用寿命的关键因素. 通过对化学键键长的比较表明, 二氢吲哚染料的分子稳定性基本相同. 对计算结果的分析表明, 二氢吲哚染料1(ID1)的LUMO能级最高, 分子稳定性最好, 在酒精溶液中的吸收光谱与太阳辐射光谱匹配很好, 在同类染料中是较好的染料敏化太阳能电池光敏剂.  相似文献   

8.
Current-voltage characteristics, electron lifetimes (tau), and electron diffusion coefficients (D) of dye-sensitized TiO2 solar cells (DSCs) composed of liquid electrolytes were repeatedly measured over a period of time. It was found that the energy conversion efficiency of the DSCs using electrolytes composed of Li+ or tetrabutylammonium cation as the counter charges of I-/I3- redox couples decreased with the lapse of time. On the other hand, such a decrease was not observed for the DSC consisting of 1,2-dimethyl-3-propylimidazolium cation or of Li+ coupled with the addition of tert-butylpyridine. The decrease of the efficiency was in accordance with a decreased electron lifetime. The notable decrease in the presence of Li+ is probably caused by the excess amount of Li+ adsorption on the TiO2 surface.  相似文献   

9.
The interfaces of the nanostructured dye-sensitized solid heterojunction TiO(2)/Ru-dye/CuI have been studied using photoelectron spectroscopy of core and valence levels, x-ray absorption spectroscopy and atomic force microscopy. A nanostructured anatase TiO(2) film sensitized with RuL(2)(NCS)(2) [cis-bis(4,4(')-dicarboxy-2,2(')-bipyridine)-bis(isothio-cyanato)-ruthenium(II)] was prepared in a controlled way using a novel combined in-situ and ex-situ (Ar atmosphere) method. Onto this film CuI was deposited in-situ. The formation of the dye-CuI interface and the changes brought upon the dye-TiO(2) interface could be monitored in a stepwise fashion. A direct interaction between the dye NCS groups and the CuI is evident in the core level photoelectron spectra. Concerning the energy matching of the valence electronic levels, the photoelectron spectra indicate that the dye HOMO overlaps in energy with the Cu 3d-I 5p hydrid states. The CuI grow in the form of particles, which at the initial stages displace the dye molecules causing dye-TiO(2) bond breaking. Consequently, the very efficient charge injection channel provided by the dye-TiO(2) carboxylic bonding is directly affected for a substantial part of the dye molecules. This may be of importance for the functional properties of such a heterojunction.  相似文献   

10.
Molybdenum sulfide (MoS(2)) and tungsten sulfide (WS(2)) are proposed as counter electrode (CE) catalysts in a I(3)(-)/I(-) and T(2)/T(-) based dye-sensitized solar cells (DSCs) system. The I(3)(-)/I(-) based DSCs using MoS(2) and WS(2) CEs achieved power conversion efficiencies of 7.59% and 7.73%, respectively.  相似文献   

11.
Quantum dot-sensitized solar cells (QDSSCs) are interesting energy devices because of their (i) impressive ability to harvest sunlight and generate multiple electron/hole pairs, (ii) ease of fabrication, and (iii) low cost. The power conversion efficiencies (η) of most QDSSCs (typically <4%) are, however, less than those (up to 12%) of dye-sensitized solar cells, mainly because of narrow absorption ranges and charge recombination occurring at the QD-electrolyte and TiO(2)-electrolyte interfaces. To further increase the values of η of QDSSCs, it will be necessary to develop new types of working electrodes, sensitizers, counter electrodes and electrolytes. This Feature Article describes the nanomaterials that have been used recently as electronic conductors, sensitizers and counter electrodes in QDSSCs. The nature, size, morphology and quantity of these nanomaterials all play important roles affecting the efficiencies of electron injection and light harvesting. We discuss the behavior of several important types of semiconductor nanomaterials (sensitizers, including CdS, Ag(2)S, CdSe, CdTe, CdHgTe, InAs and PbS) and nanomaterials (notably TiO(2), ZnO and carbon-based species) that have been developed to improve the electron transport efficiency of QDSSCs. We point out the preparation of new generations of nanomaterials for QDSSCs and the types of electrolytes, particularly iodide/triiodide electrolytes (I(-)/I(3)(-)), polysulfide electrolytes (S(2-)/S(x)(2-)), and cobalt redox couples ([Co(o-phen)(3)(2+)/(3+)]), that improve their lifetimes. With advances in nanotechnology, we foresee significant improvements in the efficiency (η > 6%) and durability (>3000 h) of QDSSCs.  相似文献   

12.
Three classes (carbides, nitrides and oxides) of nanoscaled early-transition-metal catalysts have been proposed to replace the expensive Pt catalyst as counter electrodes (CEs) in dye-sensitized solar cells (DSCs). Of these catalysts, Cr(3)C(2), CrN, VC(N), VN, TiC, TiC(N), TiN, and V(2)O(3) all showed excellent catalytic activity for the reduction of I(3)(-) to I(-) in the electrolyte. Further, VC embedded in mesoporous carbon (VC-MC) was prepared through in situ synthesis. The I(3)(-)/I(-) DSC based on the VC-MC CE reached a high power conversion efficiency (PCE) of 7.63%, comparable to the photovoltaic performance of the DSC using a Pt CE (7.50%). In addition, the carbide catalysts demonstrated catalytic activity higher than that of Pt for the regeneration of a new organic redox couple of T(2)/T(-). The T(2)/T(-) DSCs using TiC and VC-MC CEs showed PCEs of 4.96 and 5.15%, much higher than that of the DSC using a Pt CE (3.66%). This work expands the list of potential CE catalysts, which can help reduce the cost of DSCs and thereby encourage their fundamental research and commercial application.  相似文献   

13.
Starburst triarylamine based dyes for efficient dye-sensitized solar cells   总被引:3,自引:0,他引:3  
We report here on the synthesis and photophysical/electrochemical properties of a series of novel starburst triarylamine-based organic dyes (S1, S2, S3, and S4) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). For the four designed dyes, the starburst triarylamine group and the cyanoacetic acid take the role of electron donor and electron acceptor, respectively. It was found that the introduction of starburst triarylamine group to form the D-D-pi-A configuration brought about superior performance over the simple D-pi-A configuration, in terms of bathochromically extended absorption spectra, enhanced molar extinction coefficients and better thermo-stability. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the donor moiety, which was confirmed by electrochemical measurements and theoretical calculations. The DSSCs based on the dye S4 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (J(sc)) of 13.8 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.63 V, and a fill factor (ff) of 0.69, corresponding to an overall conversion efficiency of 6.02% under 100 mW cm(-2) irradiation. This work suggests that the dyes based on starburst triphenylamine donor are promising candidates for improvement of the performance of the DSSCs.  相似文献   

14.
Molecular modification of dye-sensitized, mesoporous TiO2 electrodes changes their electronic properties. We show that the open-circuit voltage (V(oc)) of dye-sensitized solar cells varies linearly with the dipole moment of coadsorbed phosphonic, benzoic, and dicarboxylic acid derivatives. A similar dependence is observed for the short-circuit current density (I(sc)). Photovoltage spectroscopy measurements show a shift of the signal onset as a function of dipole moment. We explain the dipole dependence of the V(oc) in terms of a TiO2 conduction band shift with respect to the redox potential of the electrolyte, which is partially followed by the energy level of the dye. The I(sc) shift is explained by a dipole-dependent driving force for the electron current and a dipole-dependent recombination current.  相似文献   

15.
Metalloporphyrin and metallophthalocyanine dyes ligating Hf(IV) and Zr(IV) ions bind to semiconductor oxide surfaces such as TiO(2) via the protruding group IV metal ions. The use of oxophylic metal ions with large ionic radii that protrude from the macrocycle is a unique mode of attaching chromophores to oxide surfaces in the design of dye-sensitized solar cells (DSSCs). Our previous report on the structure and physical properties of ternary complexes wherein the Hf(IV) and Zr(IV) ions are ligated to both a porphyrinoid and to a defect site on a polyoxometalate (POM) represents a model for this new way of binding dyes to oxide surfaces. The Zr(IV) and Hf(IV) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) with two ligated acetates, (TPP)Hf(OAc)(2) and (TPP)Zr(OAc)(2), and the corresponding metallophthalocyanine (Pc) diacetate complexes, (Pc)Hf(OAc)(2) and (Pc)Zr(OAc)(2), were evaluated as novel dyes for the fabrication of dye-sensitized solar cells. Similarly to the ternary complexes with the POM, the oxide surface replaces the acetates to affect binding. In DSSCs the Zr(IV) phthalocyanine dye performs better than the Zr(IV) porphyrin dye, and reaches an overall efficiency of ~ 1.0%. The Hf(IV) dyes are less efficient. The photophysical properties of these complexes in solution suggested energetically favorable injection of electrons into the conduction band of TiO(2) semiconductor nanoparticles, as well as a good band gap match with I(3) (-)/I(-) pair in liquid 1-butyl-3-methyl imidazolium iodide. The combination of blue absorbing TPP with the red absorbing Pc complexes can increase the absorbance of solar light in the device; however, the overall conversion efficiency of DSSCs using TiO(2) nanoparticles treated with a mixture of both Zr(IV) complexes is comparable, but not greater than, the single (Pc)Zr. Thus, surface bound (TPP)Zr increases the absorbance in blue region of the spectra, but at the cost of diminished absorbance in the red in this DSSC architecture.  相似文献   

16.
We report an electrospray ionization mass spectrometric study of Cu(I) and Cu(II) bipyridine complexes employed in atom transfer radical polymerization. Mass spectra of Cu(I)Br complexed with 2 equiv. of 4,4'-di(5-nonyl)-2,2'-bipyridine (dNbpy) in toluene, methyl acrylate or styrene showed the presence of [Cu(I)(dNbpy)(2)](+) cation and [Cu(I)Br(2)](-) anion. For the Cu(II)Br(2)/2dNbpy system, [Cu(II)(dNbpy)(2)Br](+), [Cu(II)(dNbpy)Br](+), [Cu(I)Br(2)](-), [Cu(II)Br(3)](-) and [Cu(II)(dNbpy)Br(3)](-) species were observed. In addition, for mixed Cu(I)Br/2dNbpy and Cu(II)Br(2)/2dNbpy systems, the negative ion mode showed only the presence of [Cu(I)Br(2)](-) anions, which are potentially formed through halogen exchange between [Cu(II)Br(3)](-) and [Cu(I)(dNbpy)(2)](+). Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

17.
We compared the spectral (IR and Raman), electrochemical, and photoelectrochemical properties of nanocrystalline TiO(2) sensitized with the newly synthesized complex [NBu(4)](2)[cis-Ru(Hdcpq)(2)(NCS)(2)] (1; [NBu(4)](+) = tetrabutylammonium cation; H(2)dcpq = 4-carboxy-2-[2'-(4'-carboxypyridyl)]quinoline) with those of TiO(2) sensitized with [NBu(4)](2)[cis-Ru(Hdcbpy)(2)(NCS)(2)] (2; H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and [NBu(4)](2)[cis-Ru(Hdcbiq)(2)(NCS)(2)] (3; H(2)dcbiq = 4,4'-dicarboxy-2,2'-biquinoline). Complex 1 achieved efficient sensitization of nanocrystalline TiO(2) films over a wide visible and near-IR region, generating a large short-circuit photocurrent. The absorbed photon-to-current conversion efficiency decreased in the order 2 > 1 > 3 with the decrease in the free energy change (-Delta G(inj)) of the electron injection from the ruthenium complex to TiO(2). The open-circuit photovoltages (V(oc)'s) of dye-sensitized solar cells decreased in the order 2 > 1 > 3 with the increase in the dark current resulting from reverse electron transfer from TiO(2) to I(3)(-). The sensitizer-dependent V(oc) value can be interpreted as a result of reverse electron transfer through the sensitizing dye molecules.  相似文献   

18.
Employing a mesoscopic titania photoanode whose bilayer structure was judiciously selected to fit the optoelectronic characteristics of the Ru-based heteroleptic complex Na-cis-Ru(4,4'-(5-hexyltiophen-2-yl)-2,2'-bipyridine)(4-carboxylic-acid-4'-carboxylate-2,2'-bipyridine)(thiocyanate)(2), coded as C101, we investigated the effect of temperature for dye adsorption on the photovoltaic performance of dye-sensitized solar cells (DSCs). We found a significant efficiency enhancement upon lowering the temperature applied during the sensitizer uptake from solution. When the dye adsorption was performed at 4 °C, the photovoltaic performance parameters measured under standard reporting conditions (AM1.5 G sunlight at 1000 W/m(2) intensity and 25 °C), i.e., the open circuit voltage (V(oc)), the short circuit photocurrent density (J(sc)), the fill factor (FF), and consequently the power conversion efficiency (PCE), improved in comparison to cells stained at 20 and 60 °C. Results from electrochemical impedance spectroscopy (EIS) and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) show that the self-assembled layer of C101 formed at lower temperature impairs the back-electron transfer from the TiO(2) conduction band to the triiodide ions in the electrolyte more strongly than the film produced at 60 °C. Profiting from the favorable influence that the low-temperature dye uptake exerts on photovoltaic performance, we have realized DSCs showing a power conversion efficiency of 11.5%.  相似文献   

19.
A series of organic thiolate/disulfide redox couples have been synthesized and have been studied systematically in dye-sensitized solar cells (DSCs) on the basis of an organic dye (TH305). Photophysical, photoelectrochemical, and photovoltaic measurements were performed in order to get insights into the effects of different redox couples on the performance of DSCs. The polymeric, organic poly(3,4-ethylenedioxythiophene) (PEDOT) material has also been introduced as counter electrode in this kind of noniodine-containing DSCs showing a promising conversion efficiency of 6.0% under AM 1.5G, 100 mW·cm(-2) light illumination. Detailed studies using electrochemical impedance spectroscopy and linear-sweep voltammetry reveal that the reduction of disulfide species is more efficient on the PEDOT counter electrode surface than on the commonly used platinized conducting glass electrode. Both pure and solvated ionic-liquid electrolytes based on a thiolate anion have been studied in the DSCs. The pure and solvated ionic-liquid-based electrolytes containing an organic redox couple render efficiencies of 3.4% and 1.2% under 10 mW·cm(-2) light illumination, respectively.  相似文献   

20.
Lu N  Shing JS  Tu WH  Hsu YC  Lin JT 《Inorganic chemistry》2011,50(10):4289-4294
A new series of amphiphilic heteroleptic ruthenium(II) sensitizers with a fluorous bis-ponytailed bipyridine ancillary ligand, [Ru(H(2)dcbpy)(4,4'-bis(R(f)CH(2)OCH(2))-2,2'-bpy)(NCS)(2)] [where R(f) = HCF(2)CF(2) (CT4), C(3)F(7) (CT7), and HCF(2)CF(2)CF(2)CF(2) (CT8)], have been synthesized and fully characterized by UV/vis, visible emission, NMR, fast atom bombardment mass spectrometry, and cyclic voltammetric studies. Dye-sensitized solar cells (DSCs) based on these dyes exhibit efficiencies comparable with that of the standard cell based on N719. The conversion efficiency of a CT7- or CT8-based DSC is ~9% higher than that of Z907 with a nonfluorous bis-ponytailed bipyridine ancillary ligand. The fluorous chains were found to increase the dye density on TiO(2) and to help to suppress the dye desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号