首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let (W,S, ) be a Coxeter system: a Coxeter group W with S its distinguished generator set and its Coxeter graph. In the present paper, we always assume that the cardinality l=|S| ofS is finite. A Coxeter element of W is by definition a product of all generators s S in any fixed order. We use the notation C(W) to denote the set of all the Coxeter elements in W. These elements play an important role in the theory of Coxeter groups, e.g., the determination of polynomial invariants, the Poincaré polynomial, the Coxeter number and the group order of W (see [1–5] for example). They are also important in representation theory (see [6]). In the present paper, we show that the set C(W) is in one-to-one correspondence with the setC() of all acyclic orientations of . Then we use some graph-theoretic tricks to compute the cardinality c(W) of the setC(W) for any Coxeter group W. We deduce a recurrence formula for this number. Furthermore, we obtain some direct formulae of c(W) for a large family of Coxeter groups, which include all the finite, affine and hyperbolic Coxeter groups.The content of the paper is organized as below. In Section 1, we discuss some properties of Coxeter elements for simplifying the computation of the value c(W). In particular, we establish a bijection between the sets C(W) andC() . Then among the other results, we give a recurrence formula of c(W) in Section 2. Subsequently we deduce some closed formulae of c(W) for certain families of Coxeter groups in Section 3.  相似文献   

2.
A Coxeter system (W, S) is said to be of type K n if the associated Coxeter graph ΓS is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by ΓS. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type K n then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W).  相似文献   

3.
We study different problems related to the Solomon’s descent algebra Σ(W) of a finite Coxeter group (W,S): positive elements, morphisms between descent algebras, Loewy length... One of the main result is that, if W is irreducible and if the longest element is central, then the Loewy length of Σ(W) is equal to . Presented by Alain Verschoren.  相似文献   

4.
The descent algebra Σ(W) is a subalgebra of the group algebra QW of a finite Coxeter group W, which supports a homomorphism with nilpotent kernel and commutative image in the character ring of W. Thus Σ(W) is a basic algebra, and as such it has a presentation as a quiver with relations. Here we construct Σ(W) as a quotient of a subalgebra of the path algebra of the Hasse diagram of the Boolean lattice of all subsets of S, the set of simple reflections in W. From this construction we obtain some general information about the quiver of Σ(W) and an algorithm for the construction of a quiver presentation for the descent algebra Σ(W) of any given finite Coxeter group W.  相似文献   

5.
6.
7.
For a Coxeter group W, X a subset of W and a positive root, we define the negative orbit of under X to be {w · | w X} , where is the set of negative roots. Here we investigate the sizes of such sets as varies in the case when W is a finite Coxeter group and X is a conjugacy class of W.  相似文献   

8.
We construct K( 1)'s for Artin groups of type C n and D n , using the lattice of elements preceding a Coxeter element in the partial order defined by reflection length.  相似文献   

9.
We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (WS) is a Coxeter system of finite rank n with set of reflections T and if \(t_1, \ldots t_n \in T\) are reflections in W that generate W, then \(P:= \langle t_1, \ldots t_{n-1}\rangle \) is a parabolic subgroup of (WS) of rank \(n-1\) (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (WS) is crystallographic as well, then all the reflections \(t \in T\) such that \(\langle P, t\rangle = W\) form a single orbit under conjugation by P.  相似文献   

10.
Twisted identities in Coxeter groups   总被引:1,自引:1,他引:0  
Given a Coxeter system (W,S) equipped with an involutive automorphism θ, the set of twisted identities is
We point out how ι(θ) shows up in several contexts and prove that if there is no sS such that s θ(s) is of odd order greater than 1, then the Bruhat order on ι(θ) is a graded poset with rank function ρ given by halving the Coxeter length. Under the same condition, it is shown that the order complexes of the open intervals either are PL spheres or ℤ-acyclic. In the general case, contractibility is shown for certain classes of intervals. Furthermore, we demonstrate that sometimes these posets are not graded. For the Poincaré series of ι(θ), i.e. its generating function with respect to ρ, a factorisation phenomenon is discussed.  相似文献   

11.
Let (W, S) be a Coxeter group associated to a Coxeter graph which has no multiple bonds. Let H be the corresponding Hecke Algebra. We define a certain quotient \-H of H and show that it has a basis parametrized by a certain subset W cof the Coxeter group W. Specifically, W cconsists of those elements of W all of whose reduced expressions avoid substrings of the form sts where s and t are noncommuting generators in S. We determine which Coxeter groups have finite W cand compute the cardinality of W cwhen W is a Weyl group. Finally, we give a combinatorial application (which is related to the number of reduced expressions for w W cof an exponential formula of Lusztig which utilizes a specialization of a subalgebra of \-H.  相似文献   

12.
13.
Tom Edgar 《代数通讯》2013,41(4):1558-1569
We investigate the imaginary cone in hyperbolic Coxeter systems in order to show that any Coxeter system contains universal reflection subgroups of arbitrarily large rank. Furthermore, in the hyperbolic case, the positive spans of the simple roots of the universal reflection subgroups are shown to approximate the imaginary cone (using an appropriate topology on the set of roots), answering a question due to Dyer [9 Dyer , M. Imaginary Cone and Reflection Subgroups of Coxeter Groups. Preprint: http://arXiv.org/abs/1210.5206  [Google Scholar]] in the special case of hyperbolic Coxeter systems. Finally, we discuss growth in Coxeter systems and utilize the previous results to extend the results of [16 Viswanath , S. ( 2008 ). On growth types of quotients of Coxeter groups by parabolic subgroups . Comm. Algebra 36 ( 2 ): 796805 .[Taylor &; Francis Online] [Google Scholar]] regarding exponential growth in parabolic quotients in Coxeter groups.  相似文献   

14.
Let (W,S)(W,S) be a Coxeter system with a strictly complete Coxeter graph. The present paper concerns the set Red(z)Red(z) of all reduced expressions for any z∈WzW. By associating each bc-expression to a certain symbol, we describe the set Red(z)Red(z) and compute its cardinal |Red(z)||Red(z)| in terms of symbols. An explicit formula for |Red(z)||Red(z)| is deduced, where the Fibonacci numbers play a crucial role.  相似文献   

15.
Yunchuan Yin 《代数通讯》2013,41(2):547-565
ABSTRACT

The “W-graph” concept was introduced by Kazhdan and Lusztig in their influential article Kazhdan and Lusztig (1979 Kazhdan , D. , Lusztig , G. ( 1979 ). Representations of Coxeter groups and Hecke algebras . Invent. Math. 53 : 165184 . [CROSSREF] [CSA] [Crossref], [Web of Science ®] [Google Scholar]). If W is a Coxeter group, then a W-graph provides a method for constructing a matrix representation of the Hecke algebra ? associated with W (the degree of the representation being the number of vertices of the W-graph). The aim of this note is to explicitly construct all the irreducible representations of ? when W is of type D 4 and D 5.  相似文献   

16.
Let W be a finite Coxeter group. We classify the reflection subgroups of W up to conjugacy and give necessary and sufficient conditions for the map that assigns to a reflection subgroup R of W the conjugacy class of its Coxeter elements to be injective, up to conjugacy.  相似文献   

17.
Summary It is shown that the outer automorphism group of a Coxeter groupW of finite rank is finite if the Coxeter graph contains no infinite bonds. A key step in the proof is to show that if the group is irreducible andΠ 1 andΠ 2 any two bases of the root system ofW, thenΠ 2 = ±ωΠ 1 for some ω εW. The proof of this latter fact employs some properties of the dominance order on the root system introduced by Brink and Howlett. This article was processed by the author using the Springer-Verlag TEX PJour1g macro package 1991.  相似文献   

18.
Twisted Bruhat orders are certain partial orders on a Coxeter system (W,S) associated to initial sections of reflection orders, which are certain subsets of the set of reflections T of a Coxeter system. We determine which subsets of T give rise to a partial order on W in the same way.  相似文献   

19.
A solution of the isomorphism problem is presented for the class of Coxeter groups W that have a finite set of Coxeter generators S such that the underlying graph of the presentation diagram of the system (W,S) has the property that every cycle of length at least four has a chord. As an application, we construct counterexamples to two conjectures concerning the isomorphism problem for Coxeter groups.   相似文献   

20.
The principal objects studied in this note are infinite, non-affine Coxeter groups W. A well-known result of de la Harpe asserts that such groups have exponential growth. We study the growth type of quotients of W by parabolic subgroups and by a certain class of reflection subgroups. Our main result is that these quotients have exponential growth as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号