首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用中频感应熔炼-快淬方法制备了La17Fe3Mn5Al2Ni73-xBx(x=0,1,3,5)储氢合金。结构分析表明,不含B的合金为双相结构,主相为LaNi5相,第二相为La2Ni7相,含B合金均由LaNi5相、La2Ni7相和La3Ni13B2相组成,且随着B含量的增加,LaNi5相和La2Ni7相减少,La3Ni13B2相逐渐增加。电化学测试表明,随着B含量的增加,合金的活化性能、最大放电容量不同程度下降,而循环稳定性有所改善。合金电极的倍率放电能力(HRD)随着B含量的增加呈先增大后减小的趋势,表明适量的B有利于提高合金的高倍率放电性能。合金电极的交换电流密度(I0)随着B含量的增加先增大后减小,而氢在合金中的扩散系数(D)则逐渐增大,表明合金的高倍率放电性能主要取决于合金表面的电荷转移能力。  相似文献   

2.
采用真空感应熔炼方法制备了La0.83Mg0.17Ni3.1Co0.3Al0.1和La0.63Gd0.2Mg0.17Ni3.2-xCo0.3Alx(x=0~0.4)贮氢合金,并在氩气气氛900℃进行退火处理。通过X射线衍射(XRD)、显微电子探针(EPMA)分析方法和电化学测试分析研究了Gd和Al元素对合金微观组织和电化学性能的影响。研究结果表明,该系列合金退火组织主要由Ce2Ni7/Gd2Co7型、Pr5Co19型、PuNi3型和CaCu5型相组成;Gd元素的加入使合金中CaCu5型相明显减少,Ce2Ni7型/Gd2Co7型相显著增加,x=0.1时其相丰度达到81.2%;随Al含量x不断增加,合金中CaCu5型相丰度逐渐增多,当x=0.1~0.2时,CaCu5型相丰度为4%~5%,x=0.4时,其相丰度达到66.65%。电化学测试分析表明,Gd和Al元素对合金电极活化性能影响不大,当x=0.1时,含Gd合金电极放电容量达到最大值391 mAh.g-1,随Al含量x进一步增加,合金电极放电容量降低。含Gd和加入适量的Al元素可使合金电极循环稳定性得到明显提高,当Al含量x=0.1,0.2时,经100次充放电循环后其电极容量保持率S100分别为93.7%和90.1%,其中La0.63Gd0.2Mg0.17Ni3.1Co0.3Al0.1合金具有最好的综合电化学性能。  相似文献   

3.
储氢合金La0.7-xCexMg0.3Ni2.4Co0.6(x=0~0.4)电化学性能研究   总被引:1,自引:0,他引:1  
研究了以Ce部分取代La对AB3型储氢合金La0.7-xCexMg0.3Ni2.4Co0.6(x=0~0.4)结构和电化学性能的影响.实验表明,该系列合金主要包含LaNi3相和LaNi5相.随着Ce含量的增加,合金电极的最大放电容量逐渐降低,但循环稳定性得到了明显改善.  相似文献   

4.
研究了快淬和退火态La15Fe77B8型储氢合金的组织结构和电化学性能。应用中频感应熔炼-快淬方法制备了La15Fe77B8型储氢合金,其组成为La15Fe2Ni72Mn7B2Al2。结构分析表明:快淬La15Fe2Ni72Mn7B2Al2合金为多相结构,包括LaNi5相、La3Ni13B2相和(Fe,Ni)相,快淬合金经1223 K保温3 h,然后在873 K保温3 h退火处理后,LaNi5相增加,La3Ni13B2相几乎消失,(Fe,Ni)相增加且形态变大。电化学测试表明,退火合金的最大容量(307 mAh.g-1)略小于快淬合金(309 mAh.g-1),而循环稳定性有所改善。退火合金电极的倍率放电能力(HRD)低于快淬合金,原因在于交换电流密度(I0)及氢在合金中的扩散系数(D)降低。快淬和退火合金电极在低温233 K时均能放出55%的容量。  相似文献   

5.
采用感应熔炼方法制备了A2B7型La0.83-0.5x(Pr0.1Nd0.1Sm0.1Gd0.2)xMg0.17Ni3.1Co0.3Al0.1(x=0~1.66)储氢合金,并在He+Ar气氛和1 173 K下进行退火处理。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学方法,研究了混合稀土(Pr,Nd,Sm,Gd)替代La元素对合金物相结构和电化学性能的影响。合金相结构分析表明,混合稀土含量对合金组成和相结构有重要的影响,随混合稀土含量x的增加,合金中主相A2B7型(2H-Ce2Ni7型+3R-Gd2Co7型)相丰度逐渐增多,其中2H-Ce2Ni7型相丰度先增多后减少,3RGd2Co7型相丰度则逐渐增加,主相晶胞参数随x增加而减小。电化学结果表明,随混合稀土含量增加,放氢平台压逐渐升高,合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律,其中x=0.4合金电极具有最高的电化学放电容量(389.8 mAh·g-1)和最佳的循环寿命(S100=91.30%);合金电极的高倍率放电性能(HRD)则随x的增加获得显著提高。适量的混合稀土替代量可显著改善合金电极的综合电化学性能。  相似文献   

6.
采用感应熔炼方法制备了La0.8-xGd0.2MgxNi3.1Co0.3Al0.1(x=0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4)储氢合金, 并在氩气气氛和1173 K下进行退火处理. 合金相结构分析结果表明, 镁含量(x)较低时合金以Ce2Ni7型为主相结构, A2B7型相丰度(Ce2Ni7+Gd2Co7)达到98.8%; 镁含量较高时合金相由A2B7型、 CaCu5型和PuNi3型物相构成, 随着镁含量的增加, PuNi3型和CaCu5型相组成逐渐增多, 其晶胞参数随Mg含量的增加而减小, 同时合金的吸氢平台也随之升高. 电化学测试结果表明, 随着合金中Mg含量增加, 合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律, 其中x=0.15时合金电极具有最高的电化学放电容量(393 mA·h/g)和最佳的循环寿命(S100=92.82%). 合金电极的高倍率放电性能(HRD)随Mg含量的增加先减小再增大然后又减小, 适量的Mg元素改善了合金电极的动力学性能.  相似文献   

7.
用冷坩埚磁悬浮熔炼方法制备La0.7Mg0.3(Ni0.85-xCo0.15Alx)3.4(x=0.00,0.04)和La0.7-yNdyMg0.3(Ni0.81Co0.15Al0.04)3.4(y=0.10)贮氢合金,采用XRD,FESEM,EDS,P-C-T测试及三电极电化学性能测试研究合金的相结构、相成分、P-C-T曲线、电化学性能及相应电极的表面状态。Rietveld法全谱拟合表明,La0.7Mg0.3(Ni0.85Co0.15)3.4合金为多相结构,主相为Ce2Ni7型六方相,主相成分为(La,Mg)(Ni0.85Co0.15)2.9-3.3。P-C-T曲线显示随着Al和Nd的依次替代,平台压力从0.0118 MPa降低到0.0057 MPa再升高到0.0073 MPa。电化学性能测试表明,最大放电容量先从392.9 mAh.g^-1降低到363.4 mAh.g^-1再降低到343.7 mAh.g^-1,循环稳定性则从59.6%增加到73.1%再增加到79.7%。  相似文献   

8.
Mg50Ni50非晶合金具有较高的初始放电容量(500mAh/g),有希望成为Ni-MH二次电池的负极合金材料.但较差的循环稳定性限制了它的进一步开发和应用.为此,本研究采用机械合金化方法,基于Mg侧进行元素替代,获得了四元Mg0.9-xTi0.1PdxNi(x=0.04-0.1)储氢合金.XRD和TEM分别从宏观和微观角度证实该系列合金仍为非晶态合金.本研究还发现,随着Pd含量的增加,腐蚀电流降低;合金的抗腐蚀能力提高.当Pd含量达到0.1的时候,Mg0.8Ti0.1Pd0.1Ni合金的耐蚀能力达到最大,其容量保持率也达到最高,经80次循环后放电容量仍然保持在200mAh/g以上.AB3型La-Mg-Ni储氢合金与Mg基合金类似之处在于:具有较高的初始放电容量但循环容量保持率较低.为此,本研究将AB3型La0.7Mg0.3Ni3.5合金与具有较高循环稳定性的AB2型Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金相复合,获得新型AB3-AB2复相合金.XRD研究表明复合物中La0.7Mg0.3Ni3.5和Ti0.17Zr0.08V0.35Cr0.1Ni0.3仍旧保持原有结构.扫描电镜(SEM)研究发现,复合物颗粒的平均尺寸在50 μm左右.由于Ti0.17Zr0.08V0.35Cr0.1Ni0.3相的防护,复合物的耐腐蚀能力及100次循环容量保持率(62.3%)得以显著提高.  相似文献   

9.
研究了以Ce,Nd和Pr部分替代LaNi(3.5)Co(0.8)Mn(0.4)Al(0.3)中的La后对合金电化学及储氢特性的影响。稀土含量的变化明显改变合金的电化学及储氢特性。Pr对合金的电化学性能影响小于Ce。Ce使合金的放电容量降低,并升高合金的氢分解压。随着Nd含量的增加,合金的放电容量降低。  相似文献   

10.
为了改善La-Mg-Ni系合金电极的循环稳定性,对铸态合金La0.75Mg0.25Ni3.5Co0.2在0.3 MPa压力氩气保护下进行不同温度的退火(1123,1223和1323 K),保温时间均为10 h。系统研究了退火温度对合金的微观结构及电化学性能的影响。X射线衍射(XRD)和扫描电镜(SEM)研究结果表明,合金具有多相结构,当铸态及1123 K温度退火后合金主要由LaNi5,(La,Mg)2(Ni,Co)7相以及少量的LaNi2相组成。当退火温度为1223和1323 K时,合金中LaNi2相消失,合金主要由LaNi5,(La,Mg)2(Ni,Co)7及(La,Mg)(Ni,Co)3相组成。随退火温度提高,合金最大放电容量单调下降,但合金的循环稳定性得到改善。退火处理改善合金循环稳定性的原因在于退火后合金组织均匀,晶粒增大,在KOH电解质溶液中增强合金电极抗氧化腐蚀能力,抑制合金颗粒粉化。  相似文献   

11.
在Ar气保护下用悬浮熔炼制备La0.7Pr0.15Nd0.05Mg0.3N i3.3-xCo0.2A l0.1(Co0.75Mn0.25)x(x=0.0,0.2,0.4,0.6)合金,系统研究了Co和Mn对合金储氢性能和电化学性能的影响。XRD相分析表明,合金相主要由(La,Pr)(N i,Co)5,LaMg2N i9,(La,Nd)2N i7和LaN i3相组成;添加Co和Mn后合金中(La,Pr)(N i,Co)5,(La,Nd)2N i7和LaN i3相晶胞体积增加,LaMg2N i9相晶胞体积变小。合金放氢PCT曲线测试表明,随着合金中Co和Mn含量的增加,合金吸氢量先减小后增加,放氢平台压下降,合金氢化物稳定性增加。合金电极电化学性能测试表明,添加Co和Mn使合金电极放电容量减小,容量保持率S100从53.2%(x=0.0)增加到63.0%(x=0.6),合金电极的电循环稳定性增强,高倍率放电性能HRD1500先增加后减小。此外,合金电极的极化电阻先减小后增加,交换电流密度、循环伏安特性阳极峰电流密度和极限电流密度先增加后减小,合金内氢原子扩散系数先增加后减小,表明添加适量的Co和Mn可以提高合金电...  相似文献   

12.
La-Mg-Ni系A2B7型贮氢合金的结构与电化学性能   总被引:2,自引:3,他引:2  
合金结构研究表明,La2-xMgxNi7(x=0.3~0.8)主要由Ce2Ni7,Gd2Co7,PuNi3型物相组成.合金中Mg含量对合金相结构有着重要影响,主相的晶胞参数随Mg含量(x)的增加呈线性减小,合金的吸放氢平台也随之升高.电化学测试表明,随合金中Mg含量的增加,合金电极的放电容量先增大后减小,合金电极的循环稳定性呈恶化趋势,La1.4Mg0.6Ni7合金电极具有最高的电化学放电容量(378 mAh·g-1),La1.6Mg0.4Ni7合金电极具有最佳的循环稳定性(S270=81%).合金电极的高倍率放电性能(HRD)随Mg含量的增加而增大.当合金中Mg含量较低时(x≤0.5),合金电极反应速度控制步骤为氢在合金体相中的扩散;当Mg含量较高时(x≥0.5),合金电极反应速度控制步骤转变为电极表面的电荷转移.  相似文献   

13.
在氩气气氛和1173 K保温条件下对La0.63 Gd0.2 Mg0.17Ni3.1 Co0.3 Al0.1储氢合金进行不同时间(t=8 ~168 h)的热处理,采用电感耦合等离子发射光谱(ICP)、X射线衍射(XRD)、电子探针显微分析方法(EPMA)和电化学测试分析方法对比研究了退火时间对合金显微组织演化和电化学性能的影响.研究结果表明,铸态合金组织由Ce2 Ni7型、Gd2Co7型、Pr5 Co19型、PuNi3型和CaCu5型相组成,其Ce2 Ni7型相的丰度为78.9%,随退火时间的延长,退火合金中Ce2 Ni7型相的丰度逐渐增加,当退火时间t=168 h时其相丰度达到94.5%,Ce2 Ni7型相结构的晶胞参数和晶胞体积随退火时间增加而减小.电化学测试分析表明,退火合金电极的电化学性能与Ce2 Ni7型相的丰度有密切关系,退火时间对合金电极的活化性能影响不大,但合金电极放电容量随退火时间的延长逐渐提高,当t=168 h时,合金电极放电容量达到最大值386.8mAh·g-1;退火时间对合金电极循环稳定性的提高和改善有不同程度的影响,当退火时间t=16~168 h时,经100次充放电循环后,其电极容量保持率S100=90.3%~91.5%.热处理能有效改善合金电极电化学反应的动力学性能,但不同退火时间对合金电极的高倍率放电性能影响不明显.  相似文献   

14.
用冷坩埚磁悬浮熔炼方法制备La1-xMgxNi2.28(x=0.0~0.6)贮氢电极合金,采用FESEM,EDS,XRD,p-c-t测试及三电极电化学性能测试研究合金的相成分、相结构、p-c-t曲线和电化学性能.EDS结合XRD分析表明,LaNi2.28合金主相为四方结构的La7Ni16相;Mg替代量x为0.3时合金主相为MgSnCu4型的LaMgNi4相,还含有LaNi5和(La,Mg)Ni3相.p-c-t曲线显示,当Mg替代量x不超过0.2时,合金无放氢平台;x为0.3时合金出现明显平台;x为0.5时合金出现两个放氢平台,相应贮氢量达到1.24%(质量分数).电化学性能测试表明,最大放电容量从100.2 mAh·g-1(x=0.0)增大到329.0 mAh·g-1(x=0.5),然后减小到207.8 mAh·g-1(x=0.6);活化性能改善;高倍率放电性能先降低后提高;循环稳定性S100从84.8%(x=0.0)提高到91.5%(x=0.2),然后降低到63.3%(x=0.5).  相似文献   

15.
用冷坩埚磁悬浮熔炼方法制备La0.5Mg0.5(Ni1-xCox)2.28(x=0.0~0.2)贮氢电极合金,采用SEM,EDS,XRD,P-C-T测试及三电极电化学性能测试研究合金的相成分、相结构、P-C-T曲线和电化学性能.EDS结合XRD分析表明,La0.5Mg0.5Ni2.28及La0.5Mg0.5(Ni0.85Co0.15)2.28合金主相均为MgSnCu4型的LaMgNi4相,还包括LaNi5和(La,Mg)Ni3相.P-C-T曲线显示,合金均有双放氢平台,合金的贮氢量由Co替代量x=0.0时的1.24%增大至极大值x=0.15时的1.27%.电化学性能测试表明,随Co含量增加,最大放电容量从329.0mAh·g-1(x=0.0)增大到337.5 mAh·g-1(x=0.15),合金活化性能及高倍率放电性能明显改善;循环稳定性无明显变化.  相似文献   

16.
采用真空电弧熔炼及退火处理制备R-Y-Ni系A_2B_7型R0.3Y0.7Ni3.25Mn0.15Al0.1(R=Y,La,Pr,Ce,Nd,Gd,Sm)储氢合金,系统研究稀土元素R对合金微观组织与结构、储氢和电化学性能的影响。XRD和SEM-EDS分析表明,合金退火组织由Ce2Ni7型主相、PuNi3型及少量Ca Cu5型相组成,Ce2Ni7型主相的晶格常数a、c及晶胞体积V均随稀土R原子半径的减小而依次降低。该合金均具有明显的吸放氢平台,常温下最大吸氢容量为1.17%~1.48%(w/w),吸氢平台压Peq为0.037~0.194 MPa。电化学分析表明,退火合金电极的电化学活化性能优良,R=La合金具有最高的放电容量(389.2 mAh·g-1)和较佳的容量保持率(充放电循环100次后的S100=85.7%),其中合金微观组织的不均匀性及稀土元素的电化学腐蚀是影响电极循环稳定性的主要原因。合金电极的高倍率放电性能(电流密度为900 m A·g-1)HRD900=71.05%~86.94%,其电极反应动力学控制步骤主要由氢原子在合金体相中的扩散速率所控制。  相似文献   

17.
采用磁悬浮感应熔炼法制备了La0.35Gd0.2Sm0.2Y0.1Mg0.15Ni3.35Al0.15合金。通过XRD,SEM,PCT及电化学性能测试等方法,研究了热处理对于该合金相结构及性能的影响。结果表明:该合金主要由PuNi3型、CaCu5型、Ce2Ni7型和Ce5Co19型相组成,随着热处理温度的提高,合金中CaCu5型相减少,Ce2Ni7型相和Ce5Co19型相增加,热处理温度高于1223 K后,合金主相由PuNi3型相转为Ce2Ni7型相,合金的储氢量增加,吸放氢平台压及平台斜率降低,电化学循环稳定增强。  相似文献   

18.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33REx(x=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14 Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333 K时放电容量可达550.4 mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

19.
Mg50Ni50非晶合金具有较高的初始放电容量(500mAh/g),有希望成为Ni-MH二次电池的负极合金材料。但较差的循环稳定性限制了它的进一步开发和应用。为此,本研究采用机械合金化方法,基于Mg侧进行元素替代,获得了四元Mg0.9-xTi0.1PdxNi(X=0.04-0.1)储氢合金。XRD和TEM分别从宏观和微观角度证实该系列合金仍为非晶态合金。本研究还发现,随着Pd含量的增加,腐蚀电流降低;合金的抗腐蚀能力提高。当Pd含量达到0.1的时候,Mg0.8Ti0.1Pd0.1Ni合金的耐蚀能力达到最大,其容量保持率也达到最高,经80次循环后放电容量仍然保持在200mAh/g以上。 AB3型La-Mg-Ni储氢合金与Mg基合金类似之处在于:具有较高的初始放电容量但循环容量保持率较低。为此,本研究将AB3型La0.7Mg0.3Ni3.5合金与具有较高循环稳定性的AB2型Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金相复合,获得新型AB3-AB2复相合金。XRD研究表明复合物中La0.7Mg0.3Ni3.5和Ti0.17Zr0.08V0.35Cr0.1Ni0.3仍旧保持原有结构。扫描电镜(SEM)研究发现,复合物颗粒的平均尺寸在50μm左右。由于Ti0.17Zr0.08V0.35Cr0.1Ni0.3相的防护,复合物的耐腐蚀能力及100次循环容量保持率(62.3%)得以显著提高。  相似文献   

20.
采用熔体快淬法制备了(Mg70.6 Ni29.4)90Nd10的非晶贮氢合金带,用X射线衍射仪和高分辨电镜对该合金在充放电循环过程中的组织结构演变进行了动态跟踪.结果表明:(Mg70.6Ni29.4)90Nd10贮氢合金在充放电循环过程中由非晶态慢慢晶化为纳米晶,初生相NdMg2 Ni9在循环过程中逐渐转化为Mg2 Ni,α-Mg和Nd2H5相.电化学性能测试表明,由于微观结构的变化对其放电容量的影响过程分为3个阶段:首先是前两个循环的活化过程,在第3个循环达到放电容量最高值(580.5 mAh·g-1);接下来是放电容量显著降低的4~10个循环阶段;最后是放电容量保持稳定的11 ~20个循环.研究发现NdMg2 Ni9相的存在和保持合金的非晶结构是提高镁基电极合金循环稳定性的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号