首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of irrotational flow past a wing of finite thickness and finite span can be reduced by Green's formula to the solution of a system of Fredholm equations of the second kind on the surface of the wing [1]. The wake vortex sheet is represented by a free vortex surface. Besides panel methods (see, for example, [2]) there are also methods of approximate solution of this problem based on a preliminary discretization of the solution along the span of the wing in which the two-dimensional integral equations are reduced to a system of one-dimensional integral equations [1], for which numerical methods of solution have already been developed [3–6]. At the same time, a discretization is also realized for the wake vortex sheet along the span of the wing. In the present paper, this idea of numerical solution of the problem of irrotational flow past a wing of finite span is realized on the basis of an approximation of the unknown functions which is piecewise linear along the span. The wake vortex sheet is represented by vortex filaments [7] in the nonlinear problem. In the linear problem, the sheet is represented both by vortex filaments and by a vortex surface. Examples are given of an aerodynamic calculation for sweptback wings of finite thickness with a constriction, and the results of the calculation are also compared with experimental results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 124–131, October–December, 1981.  相似文献   

2.
Breaking waves in a free-surface homogeneous fluid flow in the neighborhood of a local variation in the channel depth are studied experimentally and theoretically. The structure of both a steady-state hydraulic jump generated by a local obstacle in the channel and an unsteady wave configuration consisting of two turbulent bores in the problem of lock failure is studied. Using the turbulent bore model [1], analytic profiles of breaking waves are obtained and the time-dependent problem is numerically investigated and compared with experimental data. It is shown that the model [1] with a hydrostatic pressure distribution over the depth adequately describes both the location and the structure of the steady-state and unsteady wave fronts.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 62–70. Original Russian Text Copyright © 2005 by Gusev and Lyapidevskii.  相似文献   

3.
The equations describing the stationary envelope of periodic waves on the surface of a liquid of constant or variable depth are investigated. Methods previously used for investigating the propagation of solitons [1–5] are extended to the case of periodic waves. The equations considered are derived from the cubic Schrödinger equation assuming slow variation of the wave parameters. In using these equations it is sometimes necessary to introduce wave jumps. By analogy with the soliton case a wave jump theory in accordance with which the jumps are interpreted as three-wave resonant interactions is considered. The problems of Mach reflection from a vertical wall and the decay of an arbitrary wave jump are solved. In order to provide a basis for the theory solutions describing the interaction of two waves over a horizontal bottom are investigated. The averaging method [6] is used to derive systems of equations describing the propagation of one or two interacting wave's on the surface of a liquid of constant or variable depth. These systems have steady-state solutions and can be written in divergence form.The author wishes to thank A. G. Kulikovskii and A. A. Barmin for useful discussions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 113–121, September–October, 1989.  相似文献   

4.
Some questions relating to the calculation of the energy of surface waves propagating on a current and in shallows are considered. Terms that take into account the interaction of the wave boundary layer and the average shear flow are introduced into the wave energy balance equation.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 185–188, January–February, 1992.  相似文献   

5.
The results of an investigation to estimate the effect of surface and internal waves on the hydrodynamic characteristics are presented for the problem of the uniform motion of a vortex source in a three-layer fluid. The behavior of the lift force and wave drag is studied in the neighborhood of the critical Froude number. Some results of the numerical experiments are presented. An analogous investigation is also carried out for the motion in a two-layer fluid beneath a rigid top and in the presence of a bottom.Omsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 146–153, September–October, 1996.  相似文献   

6.
Several theoretical and experimental studies of supersonic flow past a blunt body located in the wake behind another body have been made [1–7]. It has been shown that a reverse-circulation flow can occur in the shock layer at the front surface. The possibility of such a flow forming depends on the nonuniformity of the freestream flow and the Reynolds number. This paper presents new results of the theoretical study of the structure of the shock wave at the front surface of such a sphere, obtained on the basis of numerical solution of Navier-Stokes equations. It is shown that for a fixed nonuniformity of the freestream flow, an increase in the Reynolds number and cooling of the surface of the body lead to the formation of a secondary vortex in the region where the contour of the body intersects the axis of symmetry. A study is made of the variations of the drag and heat transfer parameters over the front surface of a cooled and thermally insulated sphere. The possibility of numerical simulation of the flow on the basis of the Euler equations is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 143–148, May–June, 1985.  相似文献   

7.
M. Sun  K. Takayama 《Shock Waves》1997,7(5):287-295
This paper deals with the formation of a secondary shock wave behind the shock wave diffracting at a two-dimensional convex corner for incident shock Mach numbers ranging from 1.03 to 1.74 in air. Experiments were carried out using a 60 mm 150 mm shock tube equipped with holographic interferometry. The threshold incident shock wave Mach number () at which a secondary shock wave appeared was found to be = 1.32 at an 81° corner and = 1.33 at a 120° corner. These secondary shock waves are formed due to the existence of a locally supersonic flow behind the diffracting shock wave. Behind the diffracting shock wave, the subsonic flow is accelerated and eventually becomes locally supersonic. A simple unsteady flow analysis revealed that for gases with specific heats ratio the threshold shock wave Mach number was = 1.346. When the value of is less than this, the vortex is formed at the corner without any discontinuous waves accompanying above the slip line. The viscosity was found to be less effective on the threshold of the secondary shock wave, although it attenuated the pressure jump at the secondary shock wave. This is well understood by the consideration of the effect of the wall friction in one-dimensional duct flows. In order to interpret the experimental results a numerical simulation using a shock adaptive unstructured grid Eulerian solver was also carried out. Received 1 May 1996 / Accepted 12 September 1996  相似文献   

8.
Results of the experimental study and numerical modeling of the reflection of a dam–break wave at the vertical end wall of a channel are given. A wave forms with distance from a partition creating the initial level difference of the liquid. It is shown that a numerical calculation based on the Zheleznyak—Pelinovskii nonlinear dispersion model satisfactorily describes the height of the splash–up, the amplitude of reflected waves, and the wave velocity in front of the wall for smooth and dam–break waves. It is also shown that, for smooth and weakly breaking (without significant entrainment of air) incoming waves, the experimental values of the height of the splash–up at the wall agree well with relevant experimental and calculated data for solitary waves.  相似文献   

9.
Viscous waves and waves over a submerged cylinder in a stationary tank are simulated using a volume-of-fluid numerical scheme on adaptive hierarchical grids. A high resolution interface-capturing method is used to advect the free surface interface and the Navier–Stokes equations are discretised using finite volumes with collocated primitive variables and solved using a Pressure Implicit with Splitting of Operators (PISO) algorithm. The cylinder is modelled by using the technique of Cartesian cut cells. Results of flow of a single fluid past a cylinder at Reynolds number Re=100 are presented and found to agree well with experimental and other numerical data. Viscous free surface waves in a tank are simulated using uniform and quadtree grids for Reynolds numbers in the range from 2 to 2000, and the results compared against analytical solutions where available. The quadtree-based results are of the same accuracy as those on the equivalent uniform grids, and retain a sharp interface at the free surface while leading to considerable savings in both storage and CPU requirements. The nonlinearity in the wave is investigated for a selection of initial wave amplitudes. A submerged cylinder is positioned in the tank and its influence on the waves as well as the hydrodynamic loading on the cylinder is investigated.  相似文献   

10.
This paper studies the propagation of detonation and shock waves in vortex gas flows, in which the initial pressure, density, and velocity are generally functions of the coordinate — the distance from the symmetry axis. Rotational axisymmetric flow having a transverse velocity component in addition to a nonuniform longitudinal velocity is considered. The possibility of propagation of Chapman–Jouguet detonation waves in rotating flows is analyzed. A necessary conditions for the existence of a Chapman–Jouguet wave is obtained.  相似文献   

11.
A theoretical and experimental investigation has been made of the dynamics of the vortex flow induced by thin regions of reduced density in precursors that develop ahead of shock fronts during the propagation of shock waves through a channel and after its end up to the stage of restoration of the undisturbed flow. The satisfactory agreement between the experimental and calculated data indicates that the numerical analysis of the process in the framework of the Euler equations is valid.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 149–153, May–June, 1993.  相似文献   

12.
 A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates. Received: 25 April 2000/Accepted: 1 June 2001  相似文献   

13.
In [1] a model of a wave generator, together with an experimental apparatus to determine the traditional forces generated by the model in water, is described. At the surface of the model six axisymmetric traveling waves are generated, giving rise to motion of the body and the surrounding liquid. The steady flow of liquid caused by oscillations of a cylindrical surface of infinite length was investigated in [2, 3]. The present work investigates the tractional forces of an elongated solid of revolution in a liquid produced by waves traveling over the flexible cylindrical part of the body. The hydrodynamic surface forces are determined by numerical integration of the Navier-Stokes equation. Graphs of the tractional force against the velocity and amplitude of the waves are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 145–149, May–June, 1977.In conclusion, thanks are due to M. A. Il'gamovfor his interest in the work and for useful advice.  相似文献   

14.
A new technique for systematically investigating biperiodic (two-wave) steady-state solutions is described with reference to modified Korteweg-de Vries and Schrödinger equations which generalize the conventional model equations for waves on water, in plasmas, and in nonlinear optics [1]. Among these solutions those with ordinary and resonance wave interactions are distinguished. Both singular solutions similar to the solitons of a resonantly interacting wave envelope and solitary waves are found. The soliton-like solutions obtained are used for describing the wave jump structure.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 113–124, July–August, 1996.  相似文献   

15.
旋涡与行进表面水波相互作用的实验研究   总被引:1,自引:0,他引:1  
麻柏坤  张人杰 《实验力学》1997,12(2):285-290
采用振动板式造波器在二维水槽中生成近似单色的行进表面水波,采用夹板式涡发生器生成稳定上浮的涡对,在Froude数约为0.5的条件下,得到了水下涡对与不同波长和振幅的行进表面水波相互作用时的干扰图象,以实验方法验证了理论分析和数值计算的结果,并为进一步研究旋涡与行进表面水波的相互作用提供了一种实验研究方法  相似文献   

16.
Free-surface fluctuations in hydraulic jumps: Experimental observations   总被引:1,自引:0,他引:1  
A hydraulic jump is the rapid and sudden transition from a high-velocity supercritical open channel flow to a subcritical flow. It is characterised by the dynamic interactions of the large-scale eddies with the free-surface. New series of experimental measurements were conducted in hydraulic jumps with Froude numbers between 3.1 and 8.5 to investigate these interactions. The dynamic free surface measurements were performed with a non-intrusive technique while the two-phase flow properties were recorded with a phase-detection probe. The shape of the mean free surface profile was well defined and the turbulent fluctuation profiles highlighted a distinct peak of turbulent intensity in the first part of the jump roller, with free-surface fluctuation levels increasing with increasing Froude number. The dominant free-surface fluctuation frequencies were typically between 1 and 4 Hz. A comparison between the acoustic sensor signals and conductivity probe data suggested that the air–water “free-surface” detected by the acoustic sensor corresponded to about the boundary between the turbulent shear layer and the upper free-surface layer. Simultaneous measurements of free surface and bubbly flow fluctuations for Fr = 5.1 indicated that the frequency ranges of both sensors were similar (F < 5 Hz) whatever the position downstream of the toe. The present results highlighted that the dynamic free-surface measurements can be conducted successfully using acoustic displacement meters, and the time-averaged depth measurements was a physical measure of the free-surface location in hydraulic jumps.  相似文献   

17.
A large number of papers, generalized and classified in [1, 2], have been devoted to unsteady gas flows arising in shock wave interaction. Experimental results [3–5] and theoretical analysis [6–9] indicate that the most interesting and least studied types of interaction arise in cases when there are several shock waves. At the same time, nonlinear effects, which depend largely on the nature of the shock wave intersections, become appreciable. Regions of existence of different types, of plane shock wave intersections have been analyzed in [10–13]. It has been shown that in a number of cases the simultaneous existence of different types of intersections is possible. The aim of the present paper is to study unsteady shock wave intersections in the framework of a numerical solution of the axisymmetric boundary-value problem that arises in the diffraction of a plane shock wave on a cone in a supersonic gas flow. Flow regimes that augment the experimental data of [3–5] and the theoretical analysis of [9] are considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 134–140, September–October, 1986.  相似文献   

18.
The air entrainment characteristics of three separate Froude number hydraulic jumps are investigated numerically using an unsteady RANS, realizable kε turbulence model, with a Volume of Fluid treatment for the free surface. Mean velocity profiles, average void fraction, and Sauter mean diameter compare favorably with experimental data reported in literature. In all simulations, time-averaged void fraction profiles show good agreement with experimental values in the turbulent shear layer and an accurate representation of interfacial aeration at the free surface. Sauter mean diameter is well represented in the shear layer, and free surface entrainment results indicate bubble size remains relatively unchanged throughout the depth of the jump. Several different grid resolutions are tested in the simulations. Significant improvements in void fraction and bubble size comparison are seen when the diameter to grid size ratio of the largest bubbles in the shear layer surpasses eight. A three-dimensional simulation is carried out for one Froude number jump, showing an improvement in the prediction of entrained air and bubble size compared with two-dimensional results at a substantial increase in computation time. An analysis of three-dimensional vorticity shows a complex interaction between spanwise and streamwise vortical structures and entrained air bubbles. The jump is similar to a turbulent mixing layer, constrained by the free surface, with vortex pairing and subsequent fluctuations in free surface elevation. Downstream fluctuations of the toe are associated with a roll up of the primary spanwise vortex, fluctuations of the free surface, and counter-rotating streamwise vortex pairs. The action of these flow structures is likely responsible for the improvement in three-dimensional results.  相似文献   

19.
Many studies have been made of the nonstationary flow of an ideal incompressible fluid around a lifting surface. The present state of the numerical methods of solution of this problem is reviewed in [1]. The present paper studies three-dimensional nonstationary flow around a lifting surface which undergoes deformation and behind which a wake vortex surface is formed. The lifting and wake vortex surfaces are represented in parametric form. The metrics of these surfaces are used, and the introduced vortex function is approximated by bicubic splines. For the convenient application of the theory developed here to the flapping flight of insects, for which it is sometimes difficult to distinguish the lateral and trailing edges of the wings, the following terminology is introduced. The part of the edge of the lifting surface from which the wake vortex surface is shed is called the trailing edge. The remaining part is called the leading edge. On the leading edge, the velocity has a singularity. Test calculations have demonstrated the effectiveness of the method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 72–79, July–August, 1980.  相似文献   

20.
Interactions of disturbances in a hypersonic boundary layer on a porous surface are considered within the framework of the weakly nonlinear stability theory. Acoustic and vortex waves in resonant three-wave systems are found to interact in the weak redistribution mode, which leads to weak decay of the acoustic component and weak amplification of the vortex component. Three-dimensional vortex waves are demonstrated to interact more intensively than two-dimensional waves. The feature responsible for attenuation of nonlinearity is the presence of a porous coating on the surface, which absorbs acoustic disturbances and amplifies vortex disturbances at high Mach numbers. Vanishing of the pumping wave, which corresponds to a plane acoustic wave on a solid surface, is found to assist in increasing the length of the regions of linear growth of disturbances and the laminar flow regime. In this case, the low-frequency spectrum of vortex modes can be filled owing to nonlinear processes that occur in vortex triplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号