首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anion-exchange (AEX) columns were prepared by on-column polymerization of acrylates and methacrylates containing tertiary amino or quaternary ammonium groups on monolithic silica in a fused silica capillary modified with anchor groups. The columns provided a plate height (H) of less than 10 μm at optimum linear velocity (u) with keeping their high permeability (K = 9–12 × 10−14 m2). Among seven kinds of AEX columns, a monolithic silica column modified with poly(2-hydroxy-3-(4-methylpiperazin-1-yl)propyl methacrylates) (HMPMA) showed larger retentions and better selectivities for nucleotides and inorganic anions than the others. The HMPMA column of 410 mm length produced 42 000–55 000 theoretical plates (N) at a linear velocity of 0.97 mm/s with a backpressure of 3.8 MPa. The same column could be employed for a fast separation of inorganic anions in 1.8 min at a linear velocity of 5.3 mm/s with a backpressure of 20 MPa. In terms of van Deemter plot and separation impedance, the HMPMA column showed higher performance than a conventional particle-packed AEX column. The HMPMA column showed good recovery of a protein, trypsin inhibitor, and it was applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA) in a gradient elution, to provide better separation compared to a conventional particle-packed AEX column.  相似文献   

2.
A chloropropyl-functionalized silica (CP-silica) hybrid monolithic column was synthesized within the confines of a capillary via the sol–gel process using tetramethoxysilane (TMOS) and (3-chloropropyl)-trimethoxysilane (CPTMS) as the precursors. The resulting CP-silica hybrid monolith inside the capillary showed homogeneous macroporous morphology and was well attached to the inner wall of the capillary. The obtained CP-silica hybrid monolithic capillary column demonstrated the inherent hydrophobic property and could be applied as a reversed-phase stationary phase in CEC directly. Due to the great chemical reactivity of the incorporated chloro groups on the hybrid silica monolithic matrix, the chloropropyl moieties on the surface of the hybrid silica monolith matrix could be conveniently further modified by a tertiary amine of N,N-dimethyl-N-dodecylamine (DMDA) via the nucleophilic substitution reaction at 70 °C to introduce a dodecyl groups (C12) onto the CP-silica hybrid monolithic matrix. The resulting C12-silica hybrid monolithic column not only demonstrated the significantly enhanced hydrophobic property in the separation of alkylbenzenes in reversed-phase capillary electrochromatography (RP-CEC), but also the strong electroosmotic flow (EOF) in a wide pH range. Five alkylbenzenes could be baseline separated in 3 min with column efficiency ranging from 189 700 to 221 000 N/m with a 70% ACN running buffer in CEC.  相似文献   

3.
A simple capillary flow porometer (CFP) was assembled for through-pore structure characterization of monolithic capillary liquid chromatography columns in their original chromatographic forms. Determination of differential pressures and flow rates through dry and wet short capillary segments provided necessary information to determine the mean diameters and size distributions of the through-pores. The mean through-pore diameters of three capillary columns packed with 3, 5, and 7 μm spherical silica particles were determined to be 0.5, 1.0 and 1.4 μm, with distributions ranging from 0.1 to 0.7, 0.3 to 1.1 and 0.4 to 2.6 μm, respectively. Similarly, the mean through-pore diameters and size distributions of silica monoliths fabricated via phase separation by polymerization of tetramethoxysilane (TMOS) in the presence of poly(ethylene glycol) (PEG) verified that a greater number of through-pores with small diameters were prepared in columns with higher PEG content in the prepolymer mixture. The CFP system was also used to study the effects of column inner diameter and length on through-pore properties of polymeric monolithic columns. Typical monoliths based on butyl methacrylate (BMA) and poly(ethylene glycol) diacrylate (PEGDA) in capillary columns with different inner diameters (i.e., 50–250 μm) and lengths (i.e., 1.5–3.0 cm) were characterized. The results indicate that varying the inner diameter and/or the length of the column had little effect on the through-pore properties. Therefore, the through-pores are highly interconnected and their determination by CFP is independent of capillary length.  相似文献   

4.
A silica monolithic capillary column was linked to an open capillary of the same internal diameter via a Teflon sleeve to form a duplex column to investigate the combination of chromatography and electrophoresis in the mode of electrically assisted capillary liquid chromatography (eCLC). Using a commercial CE instrument with an 8.5 cm long, 100 μm i.d. reversed phase silica monolithic section and a window 1.5 cm beyond the end of this in a 21.5 cm open section, a minimum plate height of 9 μm was obtained in capillary liquid chromatography (CLC) mode at a low driving pressure of 50 psi. In eCLC mode, high speed and high resolution separations of acidic and basic compounds were achieved with selectivity tuning based on the flexible combination of pressure (0–100 psi) and voltage. Taking advantage of the excellent permeability of silica monolithic columns, use of a step flow gradient enabled elution of compounds with different charge state.  相似文献   

5.
The temperature effects during the sol–gel process and ageing of the silica-based monolith on the structure and separation efficiency of the capillary columns (100 μm i.d., 150 mm) for HPLC separations were studied. The tested columns were synthesized from a mixture of tetramethoxysilane, polyethylene glycol and urea under the acidic conditions. The temperature was varied from 40 °C to 44 °C and formation of bypass channels between the silica mold and the capillary wall was examined. The temperature of 43 °C was estimated as optimal for preparation of efficient silica capillary columns which were subsequently modified by octadecyldimethyl-N,N-diethylaminosilane or covered by poly(octadecyl methacrylate) and tested using standard mixture of alkylbenzenes under the isocratic conditions.  相似文献   

6.
A phenylboronic acid-silica hybrid monolithic column for capillary liquid chromatography (cLC) was prepared through one-pot process by using 4-vinylphenylboronic acid (VPBA) and alkoxysilanes simultaneously. The effects of the molar ratio of tetramethyloxysilane/γ-methacryloxypropyltrimethoxysilane (TMOS/γ-MAPS), amount of VPBA, and the volume of diethylene glycol (DEG) on the morphologies, permeabilities and pore properties of the prepared VPBA-silica hybrid monolithic columns were studied in detail. A relatively uniform monolithic structure with high porosity was obtained with optimized ingredients. A series of cis-diol-containing compounds, alkylbenzenes, amides, and anilines were utilized to evaluate the retention behaviors of the VPBA-silica hybrid monolithic column. The result demonstrated that the prepared VPBA-silica hybrid monolithic column exhibited multiple interactions including hydrophobicity, hydrophilicity, as well as cation exchange apart from the expected affinity interaction. The run-to-run, column-to-column and batch-to-batch reproducibility of the VPBA-silica hybrid monolith were satisfactory with the relative standard deviations (RSDs) less than 1.63% (n = 5), 2.02% (n = 3) and 2.90% (n = 5), respectively, indicating the effectiveness and practicability of the proposed method. In addition, the VPBA-silica hybrid monolithic column was further applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA), respectively. The successful applications suggested the potential of the VPBA-silica hybrid monolith in proteome analysis.  相似文献   

7.
A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC–LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001–2.0 μg mL−1 (r = 0.9995) with the detection limit (S/N = 3) of 0.075 ng mL−1. Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC–LIF method can be applied to sensitively determine phloxine B in coffee bean.  相似文献   

8.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

9.
The ability and efficiency of micro precolumns made of C30 particles, monolithic silica C18 stationary phase and quartz wool coated with C30, which act as novel solid phase absorbing materials, for the on-line enrichment of aqueous polycyclic aromatic hydrocarbons (PAHs) in microcolumn liquid chromatography (LC) was investigated. The enrichment unit was designed in such a way that micro precolumns were directly connected to a 6-port micro injection valve via fused-silica tubing (0.05 mm I.D.) in order to minimize band broadening of the samples, and the enrichment efficiency of the three materials was tested using 14 PAHs, which are selected by the US Environmental Protection Agency (US EPA), as the analytes. The separation of PAHs was evaluated by using laboratory-made C30 or ODS capillary columns and the results were compared. There were no significant differences showed from the separation of PAHs in terms of peak signal between the C30 and ODS capillary columns, but the C30 capillary column was chosen for the following experiment due to its ability to produce better repeatability than the ODS column. By using the three kinds of precolumn materials, results showed that the precolumn packed with C30 particles as well as the capillary monolithic C18 precolumns (0.1 or 0.2 mm I.D.) provided better recovery than those of the quartz wool's. As long as the recovery and separation of the PAHs were concerned, 0.1 mm I.D. monolithic C18 precolumn showed the best results and the R.S.D.s (N = 7) for the retention time, peak area and peak height were between 0.70-1.5, 2.3-5.8 and 2.4-6.6%, respectively. Large volume injection up to 0.5 mL, i.e. 2500-fold enrichment, was possible and no negative effect on the separation profile was found. The LOD (S/N = 3) were between 0.10 and 4.6 pg mL−1, while the LOQ (S/N = 10) were in the range of 0.32-15 pg mL−1, which showed that the system is comparable to many major analytical techniques and is sensitive enough for the trace analysis of PAHs in environmental samples. The system was then applied to the determination of trace PAHs present in soil sample which was randomly taken from a nearby highway.  相似文献   

10.
A novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica monolithic capillary was prepared by sol–gel technology, and used as capillary microextraction (CME) column for aluminum fractionation by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV)–ICP–MS with the use of polytetrafluoroethylene (PTFE) slurry as fluorinating agent. The extraction behaviors of different Al species were studied and it was found that in the pH range of 4–7, labile monomeric Al (free Al3+, Al–OH and Al–F) could be retained quantitatively on the monolithic capillary, while non-labile monomeric Al (Al–Cit and Al–EDTA) passed through the capillary directly. The labile monomeric Al retained on monolithic capillary was eluted with 10 μL 1 mol L− 1 HCl and the elution was introduced into the ETV for fluorination assisted ETV–ICP–MS determination. The total monomeric Al fraction was also determined by AAPTS-silica monolithic CME–fluorination-assisted electrothermal vaporization (FETV)–ICP–MS after the sample solution was adjusted to pH 8.8. Non-labile monomeric Al was obtained by subtracting labile monomeric Al from the total monomeric Al. Under the optimized conditions, the relative standard deviation (R.S.D) was 6.2% (C = 1 μg L− 1, = 7; sample volume, 5 mL), and the limit of detection was 1.6 ng L− 1 for Al with an enrichment factor of 436 fold and a sampling frequency of 9 h− 1. The prepared AAPTS-silica monolithic capillary showed an excellent pH tolerance and solvent stability and could be used for more than 250 times without decreasing adsorption efficiency. The developed method was applied to the fraction of Al in rainwater and fruit juice, and the results demonstrated that the established system had advantages over the existing 8-hydroxyquinoline (8-HQ) chelating system for Al fractionation such as wider pH range, higher tolerance of interference and better regeneration.  相似文献   

11.
Monolithic silica capillary columns with i.d. 100 μm and monolithic silica rods were prepared with tetramethoxysilane (TMOS) or a mixture of TMOS and metyltrimethoxysilane (MTMS) using different hydrothermal treatments at T=80 °C or 120 °C. Nitrogen physisorption was applied for the pore characterization of the rods and inverse size exclusion chromatography (ISEC) for that of the capillary columns. Using nitrogen physisorption, it was shown change of pore size and surface area corresponds to that of hydrothermal treatment and silica precursor. The results from ISEC agreed well with those from nitrogen physisorption regarding the pore size distribution (PSD). In addition, the retention factors for hexylbenzene with the ODS-modified capillary columns in methanol/water=80/20 at T=30 °C could also support the results from nitrogen physisorption. Furthermore, column efficiency for the columns was evaluated with alkylbenzenes and three kinds of peptides, leucine-enkephalin, angiotensin II, and insulin. Column efficiency for alkylbenzenes was similar independently of the hydrothermal treatment at T=120 °C. Even for TMOS columns, there was no significant difference in column efficiency for the peptides despite the difference in hydrothermal treatment. In contrast, for hybrid columns, it was possible to confirm the effect on hydrothermal treatment at T=120 °C resulting in a different column efficiency, especially for insulin. This difference supports the results from both nitrogen physisorption and ISEC, showing the presence of more small pores of ca. 3-6 nm for a hybrid silica without hydrothermal treatment at T=120 °C. Consequently, the results suggest that hydrothermal treatment for a hybrid column with higher temperature or longer time is necessary, compared to that for a TMOS column, to provide higher column efficiency with increase in molecular size of solute.  相似文献   

12.
We prepared hybrid particle-monolithic polymethacrylate columns for micro-HPLC by in situ polymerization in fused silica capillaries pre-packed with 3–5 μm C18 and aminopropyl silica bonded particles, using polymerization mixtures based on laurylmethacrylate–ethylene dimethacrylate (co)polymers for the reversed-phase (RP) mode and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) zwitterionic (co)polymers for the hydrophilic interaction (HILIC) mode. The hybrid particle-monolithic columns showed reduced porosity and hold-up volumes, approximately 2–2.5 times lower in comparison to the pure monolithic columns prepared in the whole volume of empty capillaries. The elution volumes of sample compounds are also generally lower in comparison to packed or pure monolithic columns. The efficiency and permeability of the hybrid columns are intermediate in between the properties of the reference pure monolithic and particle-packed columns. The chemistries of the embedded solid particles and of the interparticle monolithic moiety in the hybrid capillary columns contribute to the retention to various degrees, affecting the selectivity of separation. Some hybrid columns provided improved separations of proteins in comparison to the reference particle-packed columns in the reversed-phase mode. Zwitterionic hybrid particle-monolithic columns show dual mode retention HILIC/RP behaviour depending on the composition of the mobile phase and allow separations of polar compounds such as phenolic acids in the HILIC mode at lower concentrations of acetonitrile and, often in shorter analysis time in comparison to particle-packed and full-volume monolithic columns.  相似文献   

13.
Monolithic silica columns in semi-micro-format have been synthesized using poly(acrylic acid) as a phase-separation inducer via a sol–gel route. The absence of a thick skin layer accompanied by deformation of the micrometer-sized gelling skeletons on the outermost part of the macroporous silica rod contributed to improve the efficiency of monolithic silica columns as thick as 2.4 mm in diameter. The kinetic plot analysis revealed that monolithic silica columns with macropore diameter of 1 μm and skeleton thickness of 1 μm with decreased macroporosity behave similarly to columns packed with 3 μm particles with slightly lower back pressure.  相似文献   

14.
In this study, C18-silica monoliths were synthesized as a porous layer in open tubular capillary columns, to be cut later into microcartridges for the analysis of neuropeptides by on-line solid-phase extraction capillary electrophoresis with UV and MS detection (SPE-CE-UV and SPE-CE-MS). First, several types of C18-silica monolithic (MtC18) microcartridges were used to analyse standard solutions of five neuropeptides (i.e. dynorphin A (1–7), substance P (7–11), endomorphin 1, methionine enkephalin and [Ala]-methionine enkephalin). The MtC18 sorbents were especially selective against endomorphin 1 and substance P (7–11)). The best results in terms of sensitivity and inter-microcartridge reproducibility were achieved with the microcartridges obtained from a 10-cm open tubular capillary column with a thin monolithic coating with large through-pores (1–5 μm). Run-to-run repeatability, microcartridge durability, linearity ranges and LODs were studied by MtC18-SPE-CE-MS. As expected due to their greater selectivity, the best LOD enhancement was obtained for End1 and SP (7–11) (50 times with regard to CE-MS). Finally, the suitability of the methodology for analysing biological fluids was tested with plasma samples spiked with End1 and SP (7–11). Results obtained were promising because both neuropeptides could be detected at 0.05 μg mL−1, which was almost the same concentration level as for the standard solutions (0.01 μg mL−1).  相似文献   

15.
A new type of monolithic trapping columns with high mechanical strength was prepared by thin-layer sol–gel coating method and applied to trapping intact proteins for on-line capillary liquid chromatography. Monolithic trapping columns were fabricated by entrapping C8 reversed-phase particles into the capillary columns through a sol–gel network, which was formed by hydrolysis and polycondensation of methyltriethoxysilane. Hundreds times of trapping/untrapping for intact proteins were carried out. The trapping columns showed long-term stability up to 300 bar. Recovery, loading capacity and reproducibility of trapping columns were evaluated using four proteins. The recovery of four protein mixtures for the C8 monolithic trapping columns was 99.3% on average. The loading capacity of 5 mm × 320 μm i.d. C8 trapping columns for the protein mixtures was 30 μg. Day-to-day relative standard deviation (RSD) values for recoveries of protein mixtures on the same C8 trapping column ranged from 2.34 to 5.87%, column-to-column RSD values were from 3.01 to 6.81%. The C8 trapping columns were used to trap normal mouse liver intact proteins in a capillary liquid chromatography system. Results demonstrated high efficiency of the monolithic trapping columns for trapping intact proteins for proteomic analysis in on-line capillary liquid chromatography system.  相似文献   

16.
In the Sequential Injection Chromatography (SIC) only monolithic columns for chromatographic separations have been used so far. This article presents the first use of fused-core particle packed column in an attempt to extend of the chromatographic capabilities of the SIC system. A new fused-core particle column (2.7 μm) Ascentis® Express C18 (Supelco™ Analytical) 30 mm × 4.6 mm brings high separation efficiency within flow rates and pressures comparable to monolithic column Chromolith® Performance RP-18e 100-3 (Merck®) 100 mm × 3 mm. Both columns matches the conditions of the commercially produced SIC system - SIChrom™ (8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with 4 mL reservoir - maximal work pressure 1000 PSI) (FIAlab®, USA). The system was tested by the separation of four estrogens with similar structure and an internal standard - ethylparaben. The mobile phase composed of acetonitrile/water (40/60 (v/v)) was pumped isocratic at flow rate 0.48 mL min−1. Spectrophotometric detection was performed at wavelength of 225 nm and injected volume of sample solutions was 10 μL. The chromatographic characteristics of both columns were compared. Obtained results and conclusions have shown that both fused-core particle column and longer narrow shaped monolithic column bring benefits into the SIC method.  相似文献   

17.
A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm+Cl) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0–12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ∼6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ∼147,000 plates m−1 for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC.  相似文献   

18.
An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 μm. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations. Figure Micro-LC performance evaluation of a strong anion exchange silica monolith column, 100H-MOP-DMAPAA-Q, 33 cm in length, with a mobile phase of 50 mM phosphate buffer, pH 2.8; linear velocity: u = 1.8 mm/s; UV-Vis detection at 254 nm. Sample solution (5 mg/mL of each component, 4 mL) was injected in split flow injection mode at a split ratio of ca. 1:1900 with a pump flow rate of 1.5 mL/min  相似文献   

19.
A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL−1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL−1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≧0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL−1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≧ 3) in urine was 5 ng mL−1 for MA and MDMA and 10 ng mL−1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.  相似文献   

20.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号