首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion scans on most abundant background ions to draw a family tree of the commonly occurring chemical background ions. The possible structures and the origins of the major chemical background noise are clearly revealed in the family trees. In agreement with some suggestions in the literature, the chemical background ions studied so far can be classified mainly as either ions of contaminants (or their degradation fragments) or cluster-related ones. A significant contribution from the contaminants (airborne, from tubing and/or solvents) from plasticizer additives (phthalates, phenyl phosphates, sebacates and adipates, etc.) and silicones is concluded. These ions of contaminants can also serve as nuclei for the clustering of HPLC solvent or additives, such as water and acetic acid, thereby leading to a second family of background ions. This study explains the persistence of some chemical background noise even under fairly strong declustering conditions in API LC/MS. One of the other interesting conclusions is that there is a clear difference in structures between the chemical background ions and the protonated analytes generated under atmospheric pressure ionization. This conclusion will contribute to the on-going research efforts to exclusively remove or reduce the interference of chemical background noise in API LC/MS.  相似文献   

2.
High-performance liquid chromatography/mass spectrometry (HPLC/MS) analysis of anionic species such as sulphonic acid dyes and intermediates requires volatile ion-pairing mobile phase additives. Six di- and trialkylammonium acetates were compared with tetraalkylammonium salts and ammonium acetate in the concentration range 0-20 mmol l(-1) as mobile phase additives for HPLC/MS of polysulphonated compounds. The effects of the structure and concentration of the ion-pairing reagents on the electrospray response of mono-, di- and tetrasulphonic aromatic acids and acid dyes were studied in detail. Further, five different mass analysers and instrument geometries were compared. A higher signal decrease is observed with linear geometry instruments in comparison to orthogonal or even Z-spray geometry mass spectrometers. The concentration of mobile phase additives has a significant influence on the abundance ratios of multiply charged ions in the mass spectra of polysulphonated compounds. The competing ions of sulphonic acids may also cause significant signal suppression.  相似文献   

3.
Organic extractables (substances extracted from materials used in pharmaceutical packaging) are discovered, identified, and quantified via screening of extracts with analytical methods including liquid chromatography with mass spectrometric detection (LC-MS). Because extractables include a large number of diverse compounds that are typically present in plastic extracts at low levels, the LC-MS methods must be broad scope and sensitive. To accomplish these objectives, screening studies typically couple gradient reversed-phase separations with electrospray MS detection (both positive and negative ion modes). While such methods are generally applicable for a number of extractables, they are not optimal for some commonly encountered extractables due to either poor chromatographic performance (e.g., peak tailing) or poor MS response. Modifications to mobile phase composition (e.g., pH adjustment) were examined to improve the performance of an LC-MS screening method. The use of 0.1% acetic acid with 1 mM ammonium acetate (pH 3.6) as the aqueous portion of the mobile phase provided favorable sensitivities for a number of extractables both in positive and negative ion modes. In positive ion mode, the acidic mobile phase improved responses for moderately weak basic compounds by increasing their degree of protonation. For very weak basic compounds such as amides, ammonium ions in the mobile phase promoted proton adduct responses. In negative ion mode, an acidic mobile phase containing acetate anion improved ESI responses for acidic compounds, primarily due to gas phase effects.  相似文献   

4.
Atomic as well as molecular secondary ions are emitted from the uppermost monolayer of a solid during ion bombardment. Mass analysis of these positive and negative secondary ions supplies detailed information on the chemical composition of the bombarded surface. High mass range (> 10,000 u), high mass resolution (m/Δm > 10,000), accurate mass determination (ppm range) and high sensitivity (ppm of a monolayer) are achieved by applying time-of-flight (TOF) mass analyzers. TOF-SIMS has been successfully applied to a wide variety of polymer materials, including polymer blends, chemically or plasma modified surfaces, and plasma polymerization layers. Detailed information on the composition of repeat units, endgroups, oligomer distributions, additives, as well as surface contaminants can be obtained. Basic concepts of TOF-SIMS will be described and typical analytical examples for the characterization of polymer materials will be presented.  相似文献   

5.
During direct liquid introduction (DLI) liquid chromatography-mass spectrometry (LC-MS), the detectability of acetone is shown to be predictable, based on consideration of the gas-phase acidities and basicities of solvents methanol and acetonitrile and modifiers formic acid and ammonium formate. Consequently, ion formation in DLI LC-MS resembles gas-phase chemical ionization processes; since the order of acidities is altered in solution, solution ionization must be much less important than gas-phase. Ion populations could be predicted on the basis of gas-phase proton affinities and acidities: acetone could be detected in all solvent mixture by positive ions, but it was not readily detected by negative ions when acid was also present. In solvents without additives it was always detected.  相似文献   

6.
Reduction of ionic chemical background noise based on selective gas-phase reactions with chosen neutral reagents has been proven to be a very promising approach in liquid chromatography—mass spectrometry (LC-MS). In this study further investigations on alternative reagents including the disulfides (dimethyl disulfide, diethyl disulfide, methyl propyl disulfide), dimethyl trisulfide, ethylene oxide, and butadiene monoxide, for example, have been carried out. Tandem mass spectrometric studies of ion/molecule reactions indicate that—besides dimethyl disulfide—ethylene oxide and butadiene monoxide also exhibit very efficient reactions with background ions. Furthermore, it is confirmed that the reactions are very selective according to the test with some analyte ions. In contrast to its rapid reactions with background ions, ethylene oxide does not react, or reacts much less, with these analytes. Therefore, it can be used as an alternative reagent for noise reduction. Although reactions of the other tested neutral reagents with background ions are evaluated, they are generally not suitable as reagents for this purpose because of lack of reactivity or dramatic ion losses during reactions.  相似文献   

7.
The most widely used ionization techniques in liquid chromatography-mass spectrometry (LC-MS) are electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). All three provide user friendly coupling of LC to MS. Achieving optimal LC-MS conditions is not always easy, however, owing to the complexity of ionization processes and the many parameters affecting mass spectrometric sensitivity and chromatographic performance. The selection of eluent composition requires particular attention since a solvent that is optimal for analyte ionization often does not provide acceptable retention and resolution in LC. Compromises must then be made between ionization and chromatographic separation efficiencies. The review presents an overview of studies concerning the effect of eluent composition on the ionization efficiency of ESI, APCI and APPI in LC-MS. Solvent characteristics are discussed in the light of ionization theories, and selected analytical applications are described. The aim is to provide practical background information for the development and optimization of LC-MS methods.  相似文献   

8.
The so-called "chemical noise background" imposes a major limit on the practical sensitivity of MALDI mass spectrometry. Typically, as the amount of material of interest subjected to MALDI analysis is reduced, the signal decreases to the point where it can no longer be differentiated from the chemical noise. Using a newly designed MALDI-ion trap mass spectrometer, we describe experiments intended to throw light on the nature of the chemical noise background and to reduce its effects. Single-stage mass spectrometric signals from peptides were observed to disappear into the noise when the amount of sample applied to the MALDI sample stage was decreased to less than a femtomole. At these low levels, analysis of the collision-induced fragmentation spectra revealed the presence of ions originating from the peptide as well as cluster ions that originate from the chemical noise. The fragmentation pattern arising from dissociation of the cluster species suggests that they are composed largely of matrix molecules. A significant fraction of these cluster ions can be dissociated at activation energies lower than the threshold for peptide fragmentation. We used this finding to collisionally pre-activate MALDI ions to remove a significant portion of the chemical noise from the spectrum, allowing us to obtain readily discernible single stage MS signals from 100 attomols of peptide. The strategy also yielded high quality MS/MS spectra from 100 attomols of peptide. Different possibilities of collisional pre-activation for improving sensitivity are considered.  相似文献   

9.
Quantitative analysis of target compounds with liquid chromatography atmospheric pressure ionization mass spectrometry is sometimes hampered by adduct formation. In these situations, cationization with alkali metal ions instead of proton addition is often observed in the positive ion mode. This work studies the process of adduct formation and investigates potential strategies to control this phenomenon. Paclitaxel, a pharmaceutical chemotherapeutic agent, was used as a model compound. Electrospray (ESI), atmospheric pressure chemical ionization (APCI) and sonic spray ionization (SSI) are evaluated and compared. The work was performed on two different instruments, allowing the evaluation of different ionization behavior for different source design for electrospray, if any. Different mobile phase additives were compared, including acetic acid, formic acid, ammonium formate, and a range of primary amines. Continuous infusion was used for a fast screening, to detect optimal conditions. These were then further investigated in detail by LC-MS. The results indicate that electrospray is the more sensitive interface for this compound on the investigated apparatus. Unacceptable quantitative data were acquired without additives in the mobile phase. Generally, additives increased the reproducibility significantly. A response of mainly one ion was achieved with dodecylamine/acetic acid and acetic acid/sodium acetate. The data also point out the importance of evaluating adduct formation for compounds prone to this phenomenon during method development, especially in view of accurate quantitation.  相似文献   

10.
建立了中药及保健品中30种减肥类化学药的高效液相色谱-串联质谱(LC-MS/MS)快速筛查方法。实验优化了前处理方法、色谱分离条件和质谱参数。样品采用甲醇超声萃取,Agilent poroshell 120 ECC18(4.6 mm×100 mm,2.7μm)色谱柱分离,流动相为乙腈-水溶液(含10 mmol/L甲酸铵,0.1%甲酸,10%甲醇),梯度洗脱,流速0.25 m L/min,采用正负离子切换模式的电喷雾质谱检测,多反应选择离子监测(MRM)。该方法能同时筛查30种化学药,覆盖面广,简便、快速、准确可靠,已用于减肥类中药及保健品中非法添加化学药的筛查及检测。  相似文献   

11.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Several chromanol drug substance candidates exhibit unconventional behavior under the soft ionization conditions of fast atom bombardment and electrospray ionization in the mass spectrometer. Under FAB, these compounds produce radical cation molecular ions rather than protonated molecular ions. Similarly, under acidic mobile phase conditions in an electrospray LC-MS experiment, they produce radial cation molecular ions. Upon changing to a neutral, ammonium acetate-containing mobile phase, the molecular ion species is an ammonium adduct. The two example compounds behave conventionally under negative ion detection, both being free carboxylic acids and forming abundant [M - H](-). Examination of structural analogs indicates that the chromanol, methoxyl and chroman compounds behave this way. Oxidation to a chromanone causes formation of a conventional [M + H](+). Oxidation to a chromene produces even more complex behavior-namely a mixture of [M - H](+), M(+') and [M + H](+). We propose that, for these compounds, elimination of a valence electron to form the radical cation is the more energetically favored reaction than attachment of a proton.  相似文献   

13.
The new ionization method, called surface-activated chemical ionization (SACI), was employed for the analysis of fives drugs (morphine, codeine, 6-monoacetylmorphine (6-MAM), benzoylecgonine and cocaine) by ion trap mass spectrometry. The results so obtained have been compared with those achieved by using atmospheric pressure chemical ionization (APCI), no-discharge-APCI and electrospray ionization (ESI) clearly showing that SACI is the most sensible one mainly due to the high ionization efficiency and the lower chemical noise. The performance of SACI in terms of sensitivity and linearity was compared with the sensitivity and linearity obtained using APCI, no-discharge-APCI and ESI, showing that the new SACI approach gives rise to the best results. Then, SACI was used to analyze morphine, codeine, 6-MAM, benzoylecgonine and cocaine in urine samples. After the optimization of the instrumental parameters for a mixture of the standard compounds, eight urine samples were analyzed. They were strongly diluted (1 : 20 and 1 : 100) in order to prevent the chromatographic column damage due to the matrix composition. Furthermore, the diluted urine samples were directly analyzed, without pretreatment, through LC-MS and LC-MS/MS, and the obtained results are reported.  相似文献   

14.
Synthetic cross-linking reagents, such as 3,3′-dithiobis(sulfosuccinimidyl propionate), DTSSP, can react with sidechains of amino acids that are within close proximity. Identification of cross-linked residues provides insight into the folded structures of proteins. However, analysis of proteolytic digests of proteins cross-linked with commercially available DTSSP is difficult because many ions cannot be attributed to reported reactions of DTSSP. To better understand the reactivity of DTSSP, products from the reaction of DTSSP with several model peptides were analyzed by HPLC electrospray ionization mass spectrometry (ESIMS). Several products not previously reported were identified. Sources for these unexpected products were traced to reaction of DTSSP with contaminant ammonium ions in the buffer, to reaction of contaminants present in the commercial DTSSP reagent, and to reactivity of DTSSP with serine and tyrosine residues. In addition, the collision-induced-dissociation (CID) of peptides modified by DTSSP was investigated. These results showed that certain DTSSP-peptide adducts easily undergo in-source fragmentation to give additional unexpected ions. This study of the reactions of DTSSP with model peptides has revealed the major types of ions that are likely to be found in proteolytic digests of proteins cross-linked with DTSSP, thereby facilitating identification of the cross-linked residues that can provide information about the three-dimensional structures of folded proteins.  相似文献   

15.
本研究采用直接曝热技术,分别以氢气和甲烷为反应气,测定了10个血卟啉衍生物和13个金属血卟啉衍生物的正、负离子解吸化学电离质谱,探讨了各种化学电离质谱法在结构测定中的应用。  相似文献   

16.
A very sensitive analytical procedure based on LC-MS for determining trace amounts of the more relevant poly(naphthalenesulfonate) (PNS) contaminants present in environmental waters is presented. Extraction was performed on a styrene-divinylbenzene copolymer resin solid-phase extraction cartridge after addition of ammonium acetate to the sample. Small amounts of ammonium acetate in the mobile phase allowed the determination and characterisation of the four shorter oligomers by liquid chromatography-electrospray mass spectrometry. Under such conditions the electrospray process generates fully ionised molecules which greatly simplifies interpretation of spectra and quantitation. Additionally, confirmatory ions can be generated by the in-source collision-induced decomposition process. The effectiveness of the method was assessed in recovery experiments from drinking and river water samples spiked with commercial mixtures of PNS concrete plasticizers also referred as naphthalenesulfonate-formaldehyde condensates. Moreover, the performance of this method was compared to methods using ion-pair chromatography coupled with fluorimetric and mass spectrometric detection. Method detection limits were in the low picomolar range (1 ng/l for the monomer) for each isomer. In order to evaluate the environmental relevance of PNS type compounds waste, river and ground water grab samples were analysed. Concentrations of PNS oligomers detected in these samples ranged between 53 ng/l and 32 microg/l.  相似文献   

17.
全氯代多环芳烃的大气压化学电离质谱   总被引:1,自引:1,他引:0  
8种全氯代多环芳烃的大气压化学电离质谱(APCI-MS)测试结果表明,在APCI离原中,所有全氯代多环芳烃均能形成质量较样品分子量少19的负离子,该类负离子是样品分子离子解离一个氯原子后再结合一个氧原子的产物。当样品含有一个五元环时,仍能观察到样品的分子离子峰。APCI-MS是一种全氯代多环芳烃或其它弱极性有机物的理想质谱分析方法。  相似文献   

18.
Tang FP  Leung GN  Wan TS 《Electrophoresis》2001,22(11):2201-2209
A capillary electrophoresis-mass spectrometry (CE-MS) method for the analysis of quaternary ammonium drugs in equine urine was developed. Quaternary ammonium drugs were first extracted from equine urine by ion-pair extraction and then analysed by CE-MS in the positive electrospray ionization (ESI) mode. Within 12 min, eight quaternary ammonium drugs, each at 1 ng/mL in horse urine, could be detected. The confirmation of these drugs in urine samples was achieved by capillary electrophoresis tandem mass spectrometry (CE-MS/MS). A direct comparison of this method was made with existing liquid chromatography/mass spectrometry (LC-MS) methods in the detection and confirmation of glycopyrrolate and ipratropium bromide in horse urine. While the two drugs could be detected within the same CE-MS run at 1 ng/mL in urine, they could only be detected in separate LC-MS runs at 5 ng/mL in urine. In addition, CE-MS consumed a much smaller volume of extract; the analyte peak widths, in some cases, were much narrower; and as the quaternary ammonium ions were well separated electrophoretically from the mainly neutral urine matrix, a much cleaner background in the CE-MS total ion trace was observed.  相似文献   

19.
Liquid chromatography (LC) methods compatible with mass spectrometry (MS) that are suitable for impurity profiling of vancomycin mixtures have not been described in the literature. The mobile phases of the existing methods contain non-volatile additives and/or solvents that give problems in combination with MS. In this paper, a reversed-phase LC/tandem mass spectrometry method is described for the investigation of vancomycin and related substances. The LC method uses a Zorbax Extend C18 column (250 x 4.6 mm i.d.), 5 microm, and a mobile phase consisting of methanol, water and ammonium acetate solution (pH 9.0). This method allows us to separate vancomycin and its impurities. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an electrospray interface operated in the positive and negative ion modes. The LCQ is ideally suited for identification of impurities and related substances because it provides on-line LC/MSn capability, which allows efficient identification without time-consuming isolation and purification procedures. Using this method, the fragmentation of vancomycin and known derivatives was studied and the structures of six substances occurring in commercial samples were elucidated.  相似文献   

20.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates gas-phase analyte ions from chemical background, offering substantial improvements in the detection of peptides from complex protein digests. For a digest of enolase 1 (baker's yeast), the focusing and separation offered by FAIMS produced an average intensity gain of 3.5 for the tryptic ions and reductions in background intensity of 5- to 10-fold when compared with ESI-MS. The increased signal-to-background in the ESI-FAIMS-MS experiment resulted in a greater number of identifiable peptides and therefore greater sequence coverage. Compensation voltage (CV) maps for a total of 282 tryptic peptides from thirteen proteins, generated according to charge-state, mass-to-charge ratios, and chain length, show that a majority of tryptic peptides can be detected by operating FAIMS at a few discrete values of CV rather than scanning CV across a wide range. The ability to reduce scanning requirements has potential benefits for coupling FAIMS with LC-MS. In select cases, FAIMS can be used to eliminate isobaric MS overlap between tryptic peptides; however, the primary advantage of FAIMS in an LC-FAIMS-MS analysis is foreseen to be the attenuation of chemical background noise rather than the separation of individual peptides. Using FAIMS to reduce mass spectral noise will offer improved detection of peptides from low abundance proteins in complex biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号