首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高温固相法制备了Eu~(3+)掺杂的KMgLa(PO_4)_2荧光粉。采用X射线衍射技术及光谱技术研究了材料的晶相及发光特性。研究结果显示,少量的Eu~(3+)并未影响KMgLa(PO_4)_2的晶相;以260 nm紫外光或394 nm近紫外光作为激发源时,KMgLa(PO_4)_2∶Eu~(3+)都发射红色光,主发射峰位于595 nm,对应Eu~(3+)的~5D_0→~7F_2跃迁发射;随着Eu~(3+)掺杂量的逐渐增大,对应KMgLa(PO_4)_2∶Eu~(3+)材料的发射强度随之增大,当掺杂量为0.06Eu~(3+)时,发射强度最大,且存在浓度猝灭现象,对应的临界距离为1.696 nm;材料的CIE参数显示,材料位于红色区域。  相似文献   

2.
采用固相法合成了Ca10Li(PO4)7∶xSm3+橙红色荧光粉,研究了材料的发光性质.结果表明,以404 nm近紫外光作为激发源时,Ca10Li(PO4)7∶xSm3+表现为多峰特征,主峰位于569 nm、606 nm、651 nm和713 nm,分别对应Sm3+的4G5/2→6H5/2、4G5/2→6H7/2,4 G5/2 →6H9/2 and 4 G5/2 →6H11/2跃迁发射,且606 nm发射峰最强,材料发射橙红光;监测606 nm发射峰,对应的激发光谱包含363 nm、376 nm、404 nm和478nm多个激发峰;改变Sm3+的掺杂量,发现Ca10 Li(PO4)7∶Sm3+的发射强度表现出先增大、后减小的变化趋势,x=0.05时发射强度最大,即存在浓度猝灭现象,造成浓度猝灭的机理为电多极相互作用,Ca10Li(PO4)7∶Sm3+的色坐标基本不变,位于橙红色区域.Ca10Li(PO4)7∶Sm3+具有较好的温度特性,激活能为0.188 eV.  相似文献   

3.
本文采用还原氛下的高温固相法合成了荧光粉Sr5(PO4)3F∶ Eu2+并对其性能进行了表征,同时研究了助熔剂硼酸对该荧光粉的影响.结果 表明:在1200℃还原氛下制得的荧光粉Sr5(PO4)3F∶ Eu2+,激发峰位于418 nm,发射峰位于524 nm,是能与近紫外光LED相匹配的蓝绿色荧光粉.Eu2的最佳掺杂浓度为15mo1;,对应的色坐标为(0.2871,0.4036).添加助熔剂H3BO3可以使荧光粉Sr5(PO4)3F∶Eu2+的合成温度由1200℃降低到1100℃,最佳掺杂浓度为5wt;,同时可以增加荧光粉的发光强度.  相似文献   

4.
本文以Na2MoO4、Eu2O3 、Tb4O7和SrCl2为主要原料,通过共沉淀法制备了Sro.95 MoO4∶xEu3+∶(0.05-x)Tb3+荧光粉.通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱分析(PL)对样品进行了表征.XRD分析结果表明产物为纯白钨矿型纯四方相SrMoO4,5;的总掺杂量没有引起基质结构的变化.样品在800℃时,发光性能最好,在223 nm紫外光的激发下,Tb3+在486 nm、543 nm、583 nm、617 nm处有一组发射峰,分别对应于Tb3+的5 D4→+7F6、5D4→7F4、5D4→7F4、5D4→7F3的跃迁.Eu3+、Tb3+共掺杂时,发射光谱中Eu3+主发射峰位于611 nm附近,归属于5D0-7F2能级跃迁发射,而位于583 nm附近的弱发射峰归属于5D0-7 F1跃迁.  相似文献   

5.
采用高温固相法制备了Ba3La1-x-y(PO4)3∶ xDy3+,yEu3+白光荧光粉,并通过XRD和荧光光谱性能分析手段对样品的物相组成、发光性能和发光机理进行了研究.结果表明:由于Eu3+的掺杂影响了Ba3La(PO4)3∶ Dy3+荧光粉的晶体场环境,在Dy3+的6F9/2能级与Eu3+的5D0能级间发生交叉弛豫,并通过能量共振转移,Dy3向Eu3+传递能量,Ba3La1-x-y(PO4)3∶xDy3+,yEu3+荧光粉在350 nm紫外光激发下同时出现了Dy3+和Eu3+的特征发射,发射光谱中增加了红光成分,改善了色温.实验得出Dy3+和Eu3+掺杂浓度分别为0.08和0.06时,荧光粉的发射光最接近于理想白光.  相似文献   

6.
利用稀土离子Eu3+作为激活剂,采用溶胶燃烧法制备了Sr2.85(VO4)2∶0.1Eu3+红色荧光粉.用SEM、XRD和荧光光谱表征了荧光粉体的表面形貌、晶体结构和荧光性能.XRD分析和荧光光谱分析得出:最佳退火温度为950℃.该荧光粉在280 nm光下被高效激发,其最强发射峰位于618 nm处,对应于Eu3+的5D0到7F2的能级跃迁,表现出较强发射强度.设定发射波长为618 nm,得到荧光粉的激发光谱,其最强激发峰为280 nm处,说明该荧光粉可被紫外光有效激发.同时研究了Eu3+掺杂量和助燃剂柠檬酸对Sr2.85(VO4)2∶0.1Eu红色荧光粉发光性能的影响,得出Eu3+的最佳掺杂摩尔分数为0.1.助燃剂柠檬酸有利于形成主体基质,使荧光粉颗粒更分散,同时改善晶粒形貌,提高荧光粉的相对发光强度.  相似文献   

7.
采用固相法制备了掺杂Eu3+,Yb3+的NaBaPO4下转换荧光粉.在394 nm紫外光激发Eu3+下,获得了对应于Yb3+∶2 F7/2→2F5/2发射的1004 nm的近红外光.测量了样品的可见和近红外荧光光谱以及Eu3+的衰减曲线,验证了Eu3+到Yb3+的能量传递.观测到了样品的下转换过程,并未观测到量子剪裁现象.研究表明:Yb3+的荧光强度和能量传递效率随着Yb3+掺杂浓度的变化而变化,当样品中Eu3+,Yb3+的掺杂浓度都为5;时,具有最强的近红外发光,Eu3+到Yb3+的能量传递效率为67.9;.  相似文献   

8.
利用高温固相法制备了EH3+、Sm3单掺杂及共掺杂的SrIn2O4荧光材料.通过XRD、激发光谱、发射光谱等对SrIn2O4∶ Eu3+、SrIn2O4∶ Sm3+、SrIn2O4∶ Eu3+,Sm3+进行表征.结果表明,SrIn2O4∶ Eu3+在近紫外光395 nm激发下能够有效的产生616 nm的红光发射.在SrIn2 O4∶Sm3+体系中发现,该系列样品适合于407 nm的紫光激发,发射峰位于607 nm.在SrIn2O4∶Eu3+,Sm3+体系中,通过光谱分析发现,基质中存在Eu3和Sm3激活剂之间的相互能量传递过程.该能量传递过程使SrIn2O4∶Eu3+,Sm3+更适合于390~410 nm紫外芯片激发的LED用红色荧光粉.  相似文献   

9.
以尿素为燃料,采用自燃烧法制备Gd3 +/Eu3+掺杂羟基磷灰石(HAp∶ Gd-Eu),并用X射线衍射仪、扫描电子显微镜、荧光分光光度计和振动磁强计等对所得样品进行表征.结果表明,自燃烧法获得的产物由不规则形貌和长条状的颗粒组成,平均粒径为216.2 nm.HAp∶ Gd-Eu在紫外光(255 nm)和可见光(464 nm)激发下,具有较强的红光发射.Gd3掺杂摩尔分数X(Gd3+)为5;,Eu3+掺杂摩尔分数X(Eu3+)为2;时,Gd3+敏化Eu3+发光,HAp∶Gd-Eu发光强度最大.增大X(Gd3+)为10;,由于浓度淬灭,Eu3+发光强度减小.HAp∶ Gd-Eu发光强度随引燃温度升高,逐渐增大.HAp∶ Gd-Eu具有一定的磁响应性.  相似文献   

10.
董园园  黄榕  徐家跃  张彦 《人工晶体学报》2015,44(12):3543-3547
利用固相法合成了Eu3+掺杂的NaY(Mo/WO4)2红色荧光粉,并用对所获得的样品进行了XRD和激发-发射光谱表征.研究发现随着Eu3+掺杂量逐渐增加,发光强度随之变化.当Eu3掺杂浓度为30mo1;,荧光粉具有最强的发光强度.荧光粉能被395 nm波长紫外光有效激发,发射光谱主要体现为Eu3+的5 D0→7F2电偶极跃迁的红光发射,因此适合于解决白光LED缺乏红光成分而导致的显色性差问题.研究发现适量的W6+取代Mo6+,不但可以提高荧光粉的发光强度,而且有利于改善材料的色纯度.W6的最佳掺杂浓度为10at;.在395 nm激发下,NaY(Mo0.9W0.1O4)2∶Eu3+荧光粉的色度坐标为(0.666,0.331),优于传统商业红色荧光粉Y2O2S:Eu3+.  相似文献   

11.
本文采用高温固相法合成了Sr3Bi1-x(PO4)3∶xDy3+荧光粉。XRD图谱表明合成物质为纯相Sr3Bi(PO4)3晶体结构。主激发峰位于323 nm,348 nm,362 nm,385 nm,423 nm,451 nm和471 nm,分别对应Dy3+的6H15/2到4L19/2,6P7/2,6P5/2,4I13/2,4G11/2,4I15/2,4F9/2的跃迁。主发射峰位于482 nm(4F9/2→6H15/2),575 nm(4F9/2→6H13/2),分别对应于黄光和蓝光发射,其中以348 nm激发得到的峰值最强。研究了不同Dy3+掺杂浓度对发光性能的影响。随着Dy3+浓度的增大,样品的发光强度先增大后减小。当掺杂浓度x=0.08时,发光强度最好。并测试了样品的色坐标,为x=0.33,y=0.35,属于白光区域。  相似文献   

12.
采用溶胶-凝胶法制备Eu3+掺杂的Zn Al2O4/Si O2(ZAS)块状透明微晶玻璃发光材料。利用X射线衍射(XRD),透射电子显微镜(TEM)和荧光光谱(PL)等测试手段,系统研究了不同Eu3+掺杂浓度对ZAS发光性能的影响以及不同热处理温度对ZAS∶Eu3+发光性能的影响。结果表明,ZAS∶Eu3+在611 nm处具有强烈的红光发射峰,发射强度随着Eu3+掺杂浓度的增加,出现浓度淬灭效应,当掺杂量为20mol%时,发光强度最大;随着热处理温度的升高,存在高温淬灭效应,当热处理温度为900℃时,材料发光强度最优。CIE色度图分析表明,ZAS∶0.20Eu3+是一种潜在、优良的红光显示微晶玻璃材料。  相似文献   

13.
LiCaPO_4∶Tb~(3+)材料的制备及其发光特性   总被引:1,自引:1,他引:0  
采用高温固相法合成了LiCaPO4∶Tb3+绿色荧光粉,并研究了材料的发光性质。LiCaPO4∶Tb3+材料呈多峰发射,发射峰位于437 nm、491 nm、545 nm、587 nm和625 nm,分别对应Tb3+的5D3→7F4和5D4→7FJ=6,5,4,3跃迁发射,主峰为545 nm;监测545 nm发射峰,所得激发光谱由4f75d1宽带吸收(200~330 nm)和4f-4f电子吸收(330~400nm)组成,主峰为380 nm。研究了Tb3+掺杂浓度,电荷补偿剂Li+、Na+、K+和Cl-及敏化剂Ce3+对LiCaPO4∶Tb3+材料发射强度的影响,发现调节激活剂浓度、添加电荷补偿剂或敏化剂均可提高材料的发射强度。  相似文献   

14.
本文采用高温固相法制备出一种绿色荧光粉Ba3(PO4)2∶Tb3+,并通过X射线粉末衍射仪(XRD)和荧光分光光度计对所得荧光粉的结构和光谱性能进行了表征.结果 表明:Ba3(PO4)2体系中掺杂稀土离子Tb3+并没有引起结构的变化;荧光粉Ba3(PO4)2∶Tb3+的激发光谱的主峰位于485 nm,发射光谱的主峰位于548 nm、560 nm和647 rnm;荧光粉Ba3(PO4)2∶Tb3+中Tb3的最佳掺杂浓度为20mol;.由此可见,荧光粉Ba3(PO4)2∶Tb3是可被蓝光LED有效激发的绿色荧光粉.  相似文献   

15.
采用高温固相法制备纯相Y2( MoO4)3∶Dy3+荧光粉,并对其晶场及发光性质进行研究.晶场分析结果表明:Y3+格位晶场结构近似为对称性很低的C2,因此样品在近紫外区有很强f-f激发峰,适合于近紫外LED芯片.在387 nm激发下,主要发射峰为Dy3+的特征发射487 nm(蓝光,4F9/2→6H15/2)和574 nm(黄光,4F9/2→6H13/2).增大Dy3+掺杂浓度,黄光与蓝光的强度比值(Y/B)随之增大.387 nm激发下,不同Dy3+掺杂浓度荧光粉发射光的色坐标均在白光区域中.以上结果表明Y2( MoO4)3∶Dy3+是一种新型的适于近紫外LED芯片激发的白光荧光粉,发光性能良好.  相似文献   

16.
采用溶胶-凝胶法,通过改变煅烧温度、掺杂稀土离子的浓度合成以BaMoO4为基质的红色荧光粉.利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见光谱(UV-Vis)、荧光光谱(PL)等技术对样品进行表征.结果表明,BaMoO4∶Eu3+荧光粉属四方晶系;BaMoO4∶Eu3+荧光粉在464 nn的紫外光激发下,其发射光谱由Eu3+的5D0-7FJ(J=1,2,3,4)特征发射组成,在615 nm处的电偶极跃迁(5D0-7F2)最强,表现为Eu3+的橙-红特征发射;BaMoO4∶Eu3+荧光粉的最佳掺杂浓度为3;(摩尔比);Eu的光致发光衰减曲线符合单指数行为,其寿命(τ)为0.57 ms.  相似文献   

17.
赵文武 《人工晶体学报》2016,45(11):2717-2721
采用高温固相反应法合成了Bi2-xZnB2O7∶xEu3+(x=0.06,0.08,0.10,0.12,0.15)红色发光材料,并对其制备工艺及发光特性进行了研究.利用XRD和SEM等对粉体进行了结构、纯度和形貌表征,同时讨论了烧结温度对其发光性能的影响得出最佳的烧结温度为680℃.在激发波长为465 nm的条件下,材料的发射峰主要位于582nm、596 nm、617 nm、656 nm和704 nm处,分别归属于Eu3+的5D0→7FJ(J=0,1,2,3,4)电子跃迁,其中以在617nm处的Eu3+的5D0→7F2跃迁产生的电偶极跃迁发射为最强.研究了Eu3+离子掺杂浓度对Bi2ZnB2O7∶Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为x=0.1.  相似文献   

18.
通过PEG-400辅助水热法制备了NaLa(WO4)2,利用XRD、SEM、FTIR、TG等方法对粉体的结构、形貌、成分进行了表征.研究结果表明,pH值变化从pH=1.0到pH=9.0时,产物会发生由WO3-NaLa(WO4)2的物相转化.在180℃,pH =9.0,VPEG-400∶VH2O=1∶1时获得单分散“千层酥”状三维微晶NaLa(WO4)2,Eu3+掺入后,在λex=394 nm的激发波长下,Eu3+的5D0→7F2的跃迁强度远大于5D0→7F1的跃迁强度,Eu3+处于NaLa(WO4)2晶格非反演对称中心位置,粉体表现出较强的红光发射,继续增大Eu3+掺杂量至20mol;,会出现浓度猝灭.  相似文献   

19.
采用三氟乙酸盐高温热分解法,以稀土氧化物(RE2O3,RE=Sc,Yb,Er)、三氟乙酸(CF3COOH)、一氧化锰(MnO)和氢氧化钠(NaOH)为原料,以油胺和十八烯为混合溶剂,制备Mn2+掺杂NaScF4:18;Yb3+/2;Er3+上转换发光材料.研究了Mn2+掺杂浓度对NaScF4:18;Yb3+/2;Er3+上转换发光材料的晶相结构、微观形貌及发光性能的影响.实验结果表明:Mn2+掺杂浓度在0~5mol;范围内,所制得的产物为纯六方相NaScF4:Yb3+,Er3+晶体.当Mn2+掺杂浓度增大到10~30mol;时,样品的晶相结构并未改变,但衍射峰的强度有所降低,所制得产物的形貌由球状转变为片状.当Mn2+掺杂浓度在0~20mol;范围内,所制得的产物在980 nm激光激发下共产生3个发射峰,中心波长分别位于525 nm,555 nm和660 nm.当Mn2+掺杂浓度达到30mol;时,所制备产物的绿光发射峰几乎全部转变为波长为650~670 nm的红光发射峰.  相似文献   

20.
以二氧化锰为微波吸收剂,采用微波辐射法成功合成了CaMoO4∶Eu3+红色发光材料.用X射线粉末衍射仪、扫描电子显微镜、荧光分光光度计分别对样品的物相结构、形貌和发光性质进行了分析和表征.结果表明:所合成的CaMoO4∶Eu3+晶体结构与CaMoO4相似,属四方晶系结构;样品大颗粒呈立方形,尺寸约4~8 μm,是由200 ~ 300nm的类球形颗粒组装而成.样品的激发光谱由位于200 ~ 350 nm的一个宽带和350 ~ 500 nm的一系列尖峰组成,最大激发峰位于305 nm处;发射光谱由位于550 ~750 nm的一系列尖峰组成,最强的发射峰位于617 nm处,归属于Eu3+的5D0→7F2跃迁.当反应时间为40 min,微波功率为中高火,电荷补偿剂Li+的掺杂量为8mol;时,样品的发光强度最大,约为未掺杂电荷补偿剂样品的4倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号