首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The purpose of this work is the comparison of some aspects of the formulation of material models in the context of continuum thermodynamics (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997) with their formulation in the form of a General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger in Phys. Rev. E 56: 6620–6632, 1997; Öttinger and Grmela in Phys. Rev. E 56: 6633–6655, 1997; Öttinger in Beyond equilibrium thermodynamics, Wiley, New York, 2005; Grmela in J. Non-Newton. Fluid Mech. 165: 980–998, 2010). A GENERIC represents a generalization of the Ginzburg-Landau model for the approach of non-equilibrium systems to thermodynamic equilibrium. Originally developed to formulate non-equilibrium thermodynamic models for complex fluids, it has recently been applied to anisotropic inelastic solids in a Eulerian setting (Hütter and Tervoort in J. Non-Newton. Fluid Mech. 152: 45–52, 2008; 53–65, 2008; Adv. Appl. Mech. 42: 254–317, 2009) as well as to damage mechanics (Hütter and Tervoort in Acta Mech. 201: 297–312, 2008). In the current work, attention is focused for simplicity on the case of thermoelastic solids with heat conduction and viscosity in a Lagrangian setting (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997, Chaps. 9–12). In the process, the relation of the two formulations to each other is investigated in detail. A particular point in this regard is the concept of dissipation and its model representation in both contexts.  相似文献   

2.
We consider the Navier–Stokes equations for the motion of compressible, viscous flows in a half-space ${\mathbb{R}^n_+,}$ n =  2,  3, with the no-slip boundary conditions. We prove the existence of a global weak solution when the initial data are close to a static equilibrium. The density of the weak solution is uniformly bounded and does not contain a vacuum, the velocity is Hölder continuous in (x, t) and the material acceleration is weakly differentiable. The weak solutions of this type were introduced by D. Hoff in Arch Ration Mech Anal 114(1):15–46, (1991), Commun Pure and Appl Math 55(11):1365–1407, (2002) for the initial-boundary value problem in ${\Omega = \mathbb{R}^n}$ and for the problem in ${\Omega = \mathbb{R}^n_+}$ with the Navier boundary conditions.  相似文献   

3.
This investigation offers a detailed analysis of solutions to the two-dimensional Oseen problem in the exterior of an obstacle for large Reynolds numbers. It is motivated by mathematical results highlighting the important role played by the Oseen flows in characterizing the asymptotic structure of steady solutions to the Navier–Stokes problem at large distances from the obstacle. We compute solutions of the Oseen problem based on the series representation discovered by Tomotika and Aoi (Q J Mech Appl Math 3:140–161, 1950) where the expansion coefficients are determined numerically. Since the resulting algebraic problem suffers from very poor conditioning, the solution process involves the use of very high arithmetic precision. The effect of different numerical parameters on the accuracy of the computed solutions is studied in detail. While the corresponding inviscid problem admits many different solutions, we show that the inviscid flow proposed by Stewartson (Philos Mag 1:345–354, 1956) is the limit that the viscous Oseen flows converge to as Re → ∞. We also draw some comparisons with the steady Navier–Stokes flows for large Reynolds numbers.  相似文献   

4.
Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.  相似文献   

5.
Controlling system dynamics with use of the Largest Lyapunov Exponent (LLE) is employed in many different areas of the scientific research. Thus, there is still need to elaborate fast and simple methods of LLE calculation. This article is the second part of the one presented in Dabrowski (Nonlinear Dyn 67:283–291, 2012). It develops method LLEDP of the LLE estimation and shows that from the time series of two identical systems, one can simply extract value of the stability parameter which value can be treated as largest LLE. Unlike the method presented in part, one developed method (LLEDPT) can be applied to the dynamical systems of any type, continuous, with discontinuities, with time delay and others. The theoretical improvement shows simplicity of the method and its obvious physical background. The proofs for the method effectiveness are based on results of the simulations of the experiments for Duffing and Van der Pole oscillators. These results were compared with ones obtained with use of the Stefanski method (Stefanski in Chaos Soliton Fract 11(15):2443–2451, 2000; Chaos Soliton Fract 15:233–244, 2003; Chaos Soliton Fract 23:1651–1659, 2005; J Theor Appl Mech 46(3):665–678, 2008) and LLEDP method. LLEDPT can be used also as the criterion of stability of the control system, where desired behavior of controlled system is explicitly known (Balcerzak et al. in Mech Mech Eng 17(4):325–339, 2013). The next step of development of the method can be considered in direction that allows estimation of LLE from the real time series, systems with discontinuities, with time delay and others.  相似文献   

6.
A cylindrical cavity with an aspect ratio of unity is filled with liquid metal and suddenly exposed to an azimuthal body force generated by a rotating magnetic field (RMF). This experimental study is concerned with the secondary meridional flow during the time, if the fluid spins up from rest. Vertical profiles of the axial velocity have been measured by means of the ultrasound Doppler velocimetry. The flow measurements confirm the spin-up concept by Ungarish (J Fluid Mech 347:105–118, 1997) and the continuative study by Nikrityuk et al. (Phys Fluids 17:067101, 2005) who suggested the existence of two stages during the RMF-driven spin-up, in particular the so-called initial adjustment phase followed by an inertial phase which is dominated by inertial oscillations of the secondary flow. Evolving instabilities of the double-vortex structure of the secondary flow have been detected at a Taylor number of 1.24 × 105 verifying the predictions of Grants and Gerbeth (J Fluid Mech 463:229–240, 2002). Perturbations in form of Taylor–Görtler vortices have been observed just above the instability threshold.  相似文献   

7.
In a recent work in the static case, Gratie (Appl. Anal. 81:1107–1126, 2002) has generalized the classical Marguerre-von Kármán equations studied by Ciarlet and Paumier in (Comput. Mech. 1:177–202, 1986), where only a portion of the lateral face of the shallow shell is subjected to boundary conditions of von Kármán type, while the remaining portion is subjected to boundary conditions of free edge. Then Ciarlet and Gratie (Math. Mech. Solids 11:83–100, 2006) have established an existence theorem for these equations. In Chacha et al. (Rev. ARIMA 13:63–76, 2010), we extended formally these studies to the dynamical case. More precisely, we considered a three-dimensional dynamical model for a nonlinearly elastic shallow shell with a specific class of boundary conditions of generalized Marguerre-von Kármán type. Using technics from formal asymptotic analysis, we showed that the scaled three-dimensional solution still leads to two-dimensional dynamical boundary value problem called the dynamical equations of generalized Marguerre-von Kármán shallow shells. In this paper, we establish the existence of solutions to these equations using a compactness method of Lions (Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969).  相似文献   

8.
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations are also often represented in potential form with the help of a dissipation potential (?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech 165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear representation encompasses a wider class of phenomena as compared to the dissipation-based formulation. Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does for the underlying force–flux relations.  相似文献   

9.
In this paper we extend and complement the results in Chiodaroli et al. (Global ill-posedness of the isentropic system of gas dynamics, 2014) on the well-posedness issue for weak solutions of the compressible isentropic Euler system in 2 space dimensions with pressure law p(ρ) = ρ γ , γ ≥ 1. First we show that every Riemann problem whose one-dimensional self-similar solution consists of two shocks admits also infinitely many two-dimensional admissible bounded weak solutions (not containing vacuum) generated by the method of De Lellis and Székelyhidi (Ann Math 170:1417–1436, 2009), (Arch Ration Mech Anal 195:225–260, 2010). Moreover we prove that for some of these Riemann problems and for 1 ≤ γ < 3 such solutions have a greater energy dissipation rate than the self-similar solution emanating from the same Riemann data. We therefore show that the maximal dissipation criterion proposed by Dafermos in (J Diff Equ 14:202–212, 1973) does not favour the classical self-similar solutions.  相似文献   

10.
In this paper, we confine our attention to Kirchhoff thin plates in presence of boundary viscoelastic dissipative mechanisms, in order to investigate the well-posedness and the asymptotic behavior within the minimal state approach, following the guidelines proposed in Deseri et al. (Arch Rational Mech Anal 181:43–96, 2006) [see also Fabrizio et al. (Arch Rational Mech Anal 198:189–232, 2010)].  相似文献   

11.
We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with L p vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).  相似文献   

12.
The present work is concerned with computational evaluation of a recently formulated near-wall relationship providing the value of the dissipation rate ε of the kinetic energy of turbulence k through its exact dependence on the Taylor microscale λ: ε = 10νk/λ 2, (Jakirli? and Jovanovi?, J. Fluid Mech. 656:530–539, 2010). Dissipation rate determination benefits from the asymptotic behavior of the Taylor microscale resulting in its linear variation in terms of the wall distance (λ?∝?y) being valid throughout entire viscous sublayer. Accordingly, it can be applied as a unified near-wall treatment in all computational frameworks relying on a RANS-based model of turbulence (including also hybrid LES/RANS schemes) independent of modeling level—both main modeling concepts eddy-viscosity and Reynolds stress models can be employed. Presently, the feasibility of the proposed formulation was demonstrated by applying a conventional near-wall second-moment closure model based on the homogeneous dissipation rate ε h ( ${\varepsilon_h =\varepsilon -0.5\partial \left( {{\nu \partial k}/ {\partial x_j }} \right)} / {\partial x_j }$ ; Jakirli? and Hanjali?, J. Fluid Mech. 539:139–166, 2002) and its instability-sensitive version, modeled in terms of the inverse turbulent time scale ω h (ω h ?=?ε h /k; Maduta and Jakirli?, 2011), to a fully-developed channel flow with both flat walls and periodic hill-shaped constrictions mounted on the bottom wall in a Reynolds number range. The latter configuration is subjected to boundary layer separation from a continuous curved wall. The influence of the near-wall resolution lowering with respect to the location of the wall-closest computational node, coarsened even up to the viscous sublayer edge situated at $y_P^+ \approx 5$ in equilibrium flows, is analyzed. The results obtained follow closely those pertinent to the conventional near-wall integration with the wall-next node positioned at $y_P^+ \le 0.5$ .  相似文献   

13.
We establish a new local well-posedness result in the space of finite Borel measures for mild solutions of the parabolic–elliptic Patlak–Keller–Segel (PKS) model of chemotactic aggregation in two dimensions. Our result only requires that the initial measure satisfy the necessary assumption \({\max_{x \in \mathbb{R}^2} \mu (\{x\}) < 8 \pi}\) . This work improves the small-data results of Biler (Stud Math 114(2):181–192, 1995) and the existence results of Senba and Suzuki (J Funct Anal 191:17–51, 2002). Our work is based on that of Gallagher and Gallay (Math Ann 332:287–327, 2005), who prove the uniqueness and log-Lipschitz continuity of the solution map for the 2D Navier–Stokes equations (NSE) with measure-valued initial vorticity. We refine their techniques and present an alternative version of their proof which yields existence, uniqueness and Lipschitz continuity of the solution maps of both PKS and NSE. Many steps are more difficult for PKS than for NSE, particularly on the level of the linear estimates related to the self-similar spreading solutions.  相似文献   

14.
Following ideas in Maderna and Venturelli (Arch Ration Mech Anal 194:283–313, 2009), we prove that the Busemann function of the parabolic homotetic motion for a minimal central coniguration of the N-body problem is a viscosity solution of the Hamilton–Jacobi equation and that its calibrating curves are asymptotic to the homotetic motion.  相似文献   

15.
We prove the existence, uniqueness and regularity of weak solutions of a coupled parabolic-elliptic model in 2D, and the existence of weak solutions in 3D; we consider the standard equations of magnetohydrodynamics with the advective terms removed from the velocity equation. Despite the apparent simplicity of the model, the proof in 2D requires results that are at the limit of what is available, including elliptic regularity in L 1 and a strengthened form of the Ladyzhenskaya inequality $$\| f \|_{L^{4}} \leqq c \| f \|_{L^{2,\infty}}^{1/2} \|\nabla f\|_{L^{2}}^{1/2},$$ which we derive using the theory of interpolation. The model potentially has applications to the method of magnetic relaxation introduced by Moffatt (J Fluid Mech 159:359–378, 1985) to construct stationary Euler flows with non-trivial topology.  相似文献   

16.
We derive the quantitative modulus of continuity $$\omega(r)=\left[ p+\ln \left( \frac{r_0}{r}\right)\right]^{-\alpha (n, p)},$$ which we conjecture to be optimal for solutions of the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement with respect to the early 1980’s state-of-the-art results by Caffarelli– Evans (Arch Rational Mech Anal 81(3):199–220, 1983) and DiBenedetto (Ann Mat Pura Appl 103(4):131–176, 1982), in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent α(n, p).  相似文献   

17.
Three-dimensional tomographic time dependent PIV measurements of high Reynolds number (Re) laboratory turbulence are presented which show the existence of long-lived, highly sheared thin layer eddy structures with thickness of the order of the Taylor microscale and internal fluctuations. Highly sheared layer structures are also observed in direct numerical simulations of homogeneous turbulence at higher values of Re (Ishihara et al., Annu Rev Fluid Mech 41:165–180, 2009). But in the latter simulation, where the fluctuations are more intense, the layer thickness is greater. A rapid distortion model describes the structure and spectra for the velocity fluctuations outside and within ‘significant’ layers; their spectra are similar to the Kolmogorov (C R Acad Sci URSS 30:299–303, 1941) and Obukhov (Dokl Akad Nauk SSSR 32:22–24, 1941) statistical model (KO) for the whole flow. As larger-scale eddy motions are blocked by the shear layers, they distort smaller-scale eddies leading to local zones of down-scale and up-scale transfer of energy. Thence the energy spectrum for high wave number k is $E_X (k)\sim Bk^{-2p}$ . The exponent p depends on the forms of the large eddies. The non-linear interactions between the distorted inhomogeneous eddies produce a steady local structure, which implies that 2p?=?5/3 and a flux of energy into the thin-layers balancing the intense dissipation, which is much greater than the mean $\left<\epsilon\right>$ . Thence $B\sim\left<\epsilon\right>^{2/3}$ as in KO. Within the thin layers the inward flux energises extended vortices whose thickness and spacing are comparable with the viscous microscale. Although peak values of vorticity and velocity of these vortices greatly exceed those based on the KO scaling, the form of the viscous range spectrum is consistent with their model.  相似文献   

18.
This paper concerns the well-posedness theory of the motion of a physical vacuum for the compressible Euler equations with or without self-gravitation. First, a general uniqueness theorem of classical solutions is proved for the three dimensional general motion. Second, for the spherically symmetric motions, without imposing the compatibility condition of the first derivative being zero at the center of symmetry, a new local-in-time existence theory is established in a functional space involving less derivatives than those constructed for three-dimensional motions in (Coutand et al., Commun Math Phys 296:559–587, 2010; Coutand and Shkoller, Arch Ration Mech Anal 206:515–616, 2012; Jang and Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, 2008) by constructing suitable weights and cutoff functions featuring the behavior of solutions near both the center of the symmetry and the moving vacuum boundary.  相似文献   

19.
At least two circumstances point to the need of postprocessing techniques to recover lost time information from non-time-resolved data: the increasing interest in identifying and tracking coherent structures in flows of industrial interest and the high data throughput of global measuring techniques, such as PIV, for the validation of computational fluid dynamics (CFD) codes. This paper offers the mathematic fundamentals of a space--time reconstruction technique from non-time-resolved, statistically independent data. An algorithm has been developed to identify and track traveling coherent structures in periodic flows. Phase-averaged flow fields are reconstructed with a correlation-based method, which uses information from the Proper Orthogonal Decomposition (POD). The theoretical background shows that the snapshot POD coefficients can be used to recover flow phase information. Once this information is recovered, the real snapshots are used to reconstruct the flow history and characteristics, avoiding neither the use of POD modes nor any associated artifact. The proposed time reconstruction algorithm is in agreement with the experimental evidence given by the practical implementation proposed in the second part of this work (Legrand et al. in Exp Fluids, 2011), using the coefficients corresponding to the first three POD modes. It also agrees with the results on similar issues by other authors (Ben Chiekh et al. in 9 Congrès Francophone de Vélocimétrie Laser, Bruxelles, Belgium, 2004; Van Oudheusden et al. in Exp Fluids 39-1:86?C98, 2005; Meyer et al. in 7th International Symposium on Particle Image Velocimetry, Rome, Italy, 2007a; in J Fluid Mech 583:199?C227, 2007b; Perrin et al. in Exp Fluids 43-2:341?C355, 2007). Computer time to perform the reconstruction is relatively short, of the order of minutes with current PC technology.  相似文献   

20.
Motivated by Beale (Commun Pure Appl Math 34:359–392, 1981; Arch Ration Mech Anal 84:307–352, 1983/1984), we investigate the global well-posedness of a free boundary problem of a three-dimensional incompressible viscoelastic fluid system in an infinite strip and with surface tension on the upper free boundary, provided that the initial data is sufficiently close to the equilibrium state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号