首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

2.
《Analytical letters》2012,45(5):818-830
A facile strategy to construct an amperometric biosensor was described for the determination of hydrogen peroxide (H2O2). This biosensor relied on an electrospinning gold nanoparticle-chitosan-poly(vinyl alcohol) composite nanofibers modified ITO electrode, followed by immobilization of hemoglobin (Hb) on the surface. The introduction of nanofibers and gold nanoparticles in the modification of electrode surface not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate. Under optimum conditions, the sensor was characterized in terms of its morphology by scanning electron microscopy and its electroactivity by cyclic voltammetry and chronoamperometry. Scanning electron microscopy revealed that the obtained nanofibers were uniform. The chronoamperometric behavior of the modified electrode indicated that the immobilized Hb retained electrochemical activity inside the electrospinning fibrous membranes. The electrode responded linearly to H2O2 in a wider concentration range of 5.6 × 10?7 M to 5.2 × 10?2 M with a low detection limit (S/N = 3) of 1.98 × 10?7 M and a short response time of ~4 s, suggesting a much better performance than that of other sensors. Moreover, the biosensor achieved bulk production and exhibited superior properties for the sensitive determination of H2O2, studied namely, long-term stability, good reproducibility, and high selectivity.  相似文献   

3.
A novel NH2+ ion implantation‐modified indium tin oxide (NH2/ITO) electrode was prepared. Acid‐pretreated, negatively charged MWNTs were firstly modified on the surface of NH2+ ion implantation electrode, then, positively charged Mb was adsorbed onto MWNTs films by electrostatic interaction. The assembly of MWNTs and Mb was characterized with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Mb showed a couple of quasireversible cyclic voltammetry peaks in pH 7.0 phosphate buffer solution (PBS). The apparent surface concentration of Mb at the electrode surface was 1.06×10?9 mol cm?2. The Mb/MWNTs/NH2/ITO electrode also gave an improved electrocatalytic activity towards the reduction of hydrogen peroxide. The catalysis currents increased linearly to the H2O2 concentration in a wide range from 9×10?7 to 9.2×10?5 M with a correlation coefficient of 0.999. The detection limit was 9.0×10?7 M. The experiment results demonstrated that the modified electrode provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

4.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

5.
《Analytical letters》2012,45(17):3182-3194
Abstract

It is the first time that Horseradish peroxidase (HRP) was successively immobilized on the magnetic cobalt nanoparticles modified ITO (indium tin oxide) electrode. Morphologies of electrode surface were featured by the field emission‐scanning electron microscope (FSEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the modified process of electrode. Direct electrochemistry and electrocatalysis of HRP immobilized on nano‐Co/ITO were investigated. The biosensor exhibited high sensitivity, good stability, and excellent electrocatalytic activity to the reduction of H2O2. Under the optimized experimental conditions, a calibration curve over 2.0×10?9~2.0×10?8 mol l?1 and 2.0×10?7~2.0×10?6 mol l?1, with a limit of detection of 1.9×10?9 mol l?1 was obtained. The apparent Michaelis‐Menten constant (K M app ) for HRP/nano‐Co/ITO electrode was calculated to be 0.79 mmol l?1, indicating a higher affinity of HRP attached on the modified electrode.  相似文献   

6.
The direct electrochemistry of catalytically active cytochrome C (Cyt c) adsorbed together with a 3-dimensional network of chemically synthesized graphene on glassy carbon electrode has been readily obtained in aqueous phosphate buffer. Direct electrical communication between the redox center of Cyt c and the modified graphene-based electrode was established. The modified electrode was employed as a high-performance hydrogen peroxide (H2O2) biosensor. The Cyt c present in modified electrode exhibited a pair of quasi-reversible redox peaks with a midpoint potential of ?0.380 and ?0.2 V, cathodic and anodic, respectively. Investigations into the electrocatalytic activity of the modified electrode upon hydrogen peroxide exposure revealed a rapid amperometric response (5 s). Under optimized conditions, the linear range of response to H2O2 concentration ranged from 5 × 10?7 to 2 × 10?4 M with a detection limit of 2 × 10?7 M at a signal-to-noise ratio of 3. The stability, reproducibility, and selectivity of the proposed biosensor are discussed in relation to the morphology and composition of the modified electrode.  相似文献   

7.
We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about ?0.17?V (vs. SCE) at pH?6.86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0.08 to 250?μM concentration range. The detection limit is 0.05?μM (at S/N?=?3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP.
Figure
(A) FIA it graphs of the different concentrations of H2O2 at CS/Hb/AgNP/CPE in the PBS (pH?6.86). Applied potential: ?0.4?V. (1) 0.8?×?10?6?mol?L?1, (2) 2.4?×?10?6?mol?L?1, (3) 4?×?10?6?mol?L?1 (B) Plot of catalytic peak currents vs. the concentration of H2O2.  相似文献   

8.
Graphene/Fe3O4 nanocomposite was prepared for the immobilization of hemoglobin (Hb) to improve the electron transfer between Hb and glass carbon electrode (GCE). The characterization of nanocomposites was described by transmission electron microscopy, Fourier transform infrared, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The electrochemistry of Hb on the graphene/Fe3O4-based GCE was investigated by cyclic voltammetry and amperometric measurement. The modified electrode showed a wide linear range from 0.25 μmol/L to 1.7 mmol/L with a correlation coefficient of 0.9967. The detection limit of the H2O2 biosensor was estimated at 6.0?×?10?6?mol/L at a signal-to-noise ratio of 3.  相似文献   

9.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

10.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

11.
Enzyme-free amperometric ultrasensitive determination of hydrogen peroxide (H2O2) was investigated using a Prussian blue (PB) film-modified gold nanoparticles (AuNPs) graphite–wax composite electrode. A stable PB film was obtained on graphite surface through 2-aminoethanethiol (AET)-capped AuNPs by a simple approach. Field emission scanning electron microscope studies results in formation of PB nanoparticle in the size range of 60–80 nm. Surface modification of PB film on AET–AuNPs–GW composite electrode was confirmed by Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy studies. Highly sensitive determination of H2O2 at a peak potential of ?0.10 V (vs. SCE) in 0.1 M KCl PBS, pH?=?7.0) at a scan rate of 20 mVs?1 with a sensitivity of 23.58 μA/mM was observed with the modified electrode using cyclic voltammetry. The synergetic effect of PB film with AuNPs has resulted in a linear range of 0.05 to 7,800 μM with a detection limit of 0.015 μM for H2O2 detection with the present electrode. Chronoamperometric studies recorded for the successive additions of H2O2 with the modified electrode showed an excellent linearity (R 2?=?0.9932) in the range of 4.8?×?10?8 to 7.4?×?10?8 M with a limit of detection of 1.4?×?10?8 M. Selective determination of H2O2 in presence of various interferents was successfully demonstrated. Human urine samples and stain remover solutions were also investigated for H2O2 content.  相似文献   

12.
Titanium dioxide nanorods (TNR) were grown on a titanium electrode by a hydrothermal route and further employed as a supporting matrix for the immobilization of nafion-coated horseradish peroxidase (HRP). The strong electrostatic interaction between HRP and TNR favors the adsorption of HRP and facilitates direct electron transfer on the electrode. The electrocatalytic activity towards hydrogen peroxide (H2O2) was investigated via cyclic voltammetry and amperometry. The biosensor exhibits fast response, a high sensitivity (416.9 μA·mM?1), a wide linear response range (2.5 nM to 0.46 mM), a detection limit as low as 12 nM, and a small apparent Michaelis-Menten constant (33.6 μM). The results indicate that this method is a promising technique for enzyme immobilization and for the fabrication of electrochemical biosensors.
Figure
A TiO2 nanorod film was directly grown on Ti substrate by a hydrothermal route, and was further employed for a supporting matrix to immobilize horseradish peroxidase as a biosensor electrode. The as-prepared hydrogen peroxide biosensor based on Nafion/HRP/TNR/Ti electrode exhibited fast response and excellent electrocatalytic activity toward H2O2, i.e., a high sensitivity (416.9 μA mM?1), a wide linear range (2.5?×?10?8 to 4.6?×?10?4 M) with a low detection limit (0.012 μM) and a small apparent Michaelis-Menten constant (33.6 μM).  相似文献   

13.
《Analytical letters》2012,45(5):885-897
Hemoglobin (Hb) was successfully immobilized on a gold electrode modified with gold nanoparticles (AuNPs) via a molecule bridge 1,6-hexanedithiol (HDT). The AFM images suggested that the HDT/gold electrode could adsorb more AuNPs. UV-vis spectra indicated that Hb on AuNPs/HDT film retained its near-native secondary structures. The electrochemical behaviors of the sensor were characterized with cyclic voltammetric techniques. The resultant electrode displayed an excellent electrocatalytical response to the reduction of hydrogen peroxide (H2O2). The linear relationship existed between the catalytic current and the H2O2 concentration ranging from 5.0 × 10?8 to 1.0 × 10?6 mol · L?1. The detection limit (S/N = 3) was 1.0 × 10?8 mol · L?1.  相似文献   

14.
A novel nanocomposite designed by the assembly of the positively charged poly(diallyldimethylammonium chloride) protected gold nanoparticles (PDDA‐GNPs), and the negatively charged multi‐walled carbon nanotubes (MWCNTs) on ITO electrode via electrostatic interaction, was used as a supporting matrix for immobilizing hemoglobin (Hb) to develop a high‐performance hydrogen peroxide (H2O2) biosensor. The cyclic voltammetrys of immobilized Hb showed a pair of well‐defined and quasi‐reversible redox peaks with the formal potential of ‐0.205V (vs. SCE) and the peak‐to‐peak potential separation of 44 mV at a scan rate of 100 mV×s?1 in 0.1 mol×L?1 pH 7.0 PBS. Under the optimized experimental conditions, a linearity range for determination of H2O2 was from 2.0 × 10?6 to 5.2 × 10?4 mol×L?1 with a correlation coefficient of 0.9994 (n = 37) and a detection limit of 8.4 × 10?7 mol×L?1. The biosensor displayed excellent electrochemical and electrocatalytic response to the reduction of H2O2, high sensitivity, long‐term stability, good bioactivity and selectivity.  相似文献   

15.
《Analytical letters》2012,45(17):3100-3112
Abstract

A novel hemoglobin (Hb) biosensor based on the remarkable synergistic effects of cerium dioxide (CeO2) and multiwalled carbon nanotubes (MWNTs) for detection of hydrogen peroxide (H2O2) is presented. The Hb/CeO2/MWNTs/CHIT nanocomposite was nanoengineered by selected matched material components and optimized composition ratio to produce a superior H2O2 sensor. The preparation method is quite simple and practical. This composite matrix combined the advantages of MWNTs, CeO2 nanoparticles, and chitosan (CHIT), with good electron-transfer ability, attractive biocompatibility, and fine film-forming ability, which could increase Hb attachment quantity and H2O2 detection sensitivity. In the optimum pH 7.0 phosphate buffer, the electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 5.0 × 10?6 to 4.6 × 10?4 mol L?1 with a detection limit of 6.5 × 10?7 mol/L (3σ).  相似文献   

16.
《Analytical letters》2012,45(8):1556-1568
Abstract

A reagentless H2O2 sensor based on the direct electron transfer of myoglobin (Mb) doped in multiwalled carbon nanotubes enhanced grafted collagen matrix is proposed. The formal potential of the immobilized Mb was ?0.358 V with a surface coverage of 4.0×10?10 mol cm?2. The electrode process was surface‐controlled with an electron transfer rate constant of 9.7 s?1. The proposed biosensor displayed an excellent electrocatalytic response to the reduction of H2O2 with a linear range from 0.6 to 39.0 µM. Owing to the good biocompatibility and high enzyme loading of the matrix the biosensor exhibited acceptable stability and reproducibility.  相似文献   

17.
《Analytical letters》2012,45(15):2496-2508
Abstract

A biosensor for hydrogen peroxide was fabricated by co-immobilizing cadmium telluride (CdTe) nanoparticles, chitosan, and hemoglobin (Hb) matrix. There was a pair of nearly reversible redox peaks around ?0.360 V, and the electrochemical behavior of Hb was a surface-controlled process, with an electron-transfer rate constant of 1.36 s?1 and surface coverage of 2.62 × 10?10 mol cm?2. Fourier transform infrared (FT-IR) spectra and ultraviolet–visible (UV-vis) spectra indicated that Hb sustained its natural conformation. It was demonstrated that Hb in the matrix kept its bioactivity and exhibited catalytic ability toward H2O2, with a response ranging from 7.44 × 10?6 to 6.95 × 10?4 M and a detection limit of 2.23 × 10?6 M.  相似文献   

18.
A new amperometric biosensor for hydrogen peroxide (H2O2) was developed by adsorbing hemoglobin (Hb) on an organic sol‐gel film. The organic sol‐gel was prepared using resorcinol and formaldehyde as monomers. This sol‐gel film shows a biocompatible microenvironment for retaining the native activity of the adsorbed Hb. The direct electron transfer between Hb and electrode is achieved. Hb adsorbed on the film shows an enzyme‐like catalytic activity for the reduction of H2O2. The reduction peak currents are proportional linearly to the concentration of hydrogen peroxide in the range of 6×10?8 to 3.6×10?6 M, with a detection limit of 2.4×10?8 M (S/N=3). This research enlarges the applications of organic sol‐gel materials in biosensor field.  相似文献   

19.
《Analytical letters》2012,45(5):875-886
Abstract

Platinum nanowires (PtNW) were prepared by an electrodeposition strategy using nanopore alumina template. The nanowires prepared were dispersed in chitosan (CHIT) solution and stably immobilized onto the surface of glassy carbon electrode (GCE). The electrochemical behavior of PtNW‐modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H2O2) are investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As an application example, the glucose oxidase was immobilized onto the surface of PtNW‐modified electrode through cross‐linking by glutaric dialdehyde. The detection of glucose was performed in phosphate buffer at –0.2 V. The resulting glucose biosensor exhibited a short response time (<8 s), with a linear range of 10?5?10?2 M and detection limit of 5×10?6 M.  相似文献   

20.
A novel non-enzymatic electrochemical sensor based on a nanoporous gold electrode modified with platinum nanoparticles was constructed for the determination of hydrogen peroxide (H2O2). Platinum nanoparticles exhibit good electrocatalytic activity towards hydrogen peroxide. The nanoporous gold (NPG) increases the effective surface area and has the capacity to promote electron-transfer reactions. With electrodeposition of Pt nanoparticles (NPs) on the surface of the nanoporous gold, the modified Au electrode afforded a fast, sensitive and selective electrochemical method for the determination of H2O2. The linear range for the detection of H2O2 was from 1.0 × 10?7 M to 2.0 × 10?5 M while the calculated limit of detection was 7.2 × 10?8 M on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples). These findings could lead to the widespread use of electrochemical sensors to detect H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号