首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the following nonlinear Stefan problem $$\left\{\begin{aligned}\!\!&u_t\,-\,d\Delta u = g(u) & &\quad{\rm for}\,x\,\in\,\Omega(t), t > 0, \\ & u = 0 \, {\rm and} u_t = \mu|\nabla_{x} u|^{2} &&\quad {\rm for}\,x\,\in\,\Gamma(t), t > 0, \\ &u(0, x) = u_{0}(x) &&\quad {\rm for}\,x\,\in\,\Omega_0,\end{aligned} \right.$$ where ${\Omega(t) \subset \mathbb{R}^{n}}$ ( ${n \geqq 2}$ ) is bounded by the free boundary ${\Gamma(t)}$ , with ${\Omega(0) = \Omega_0}$ μ and d are given positive constants. The initial function u 0 is positive in ${\Omega_0}$ and vanishes on ${\partial \Omega_0}$ . The class of nonlinear functions g(u) includes the standard monostable, bistable and combustion type nonlinearities. We show that the free boundary ${\Gamma(t)}$ is smooth outside the closed convex hull of ${\Omega_0}$ , and as ${t \to \infty}$ , either ${\Omega(t)}$ expands to the entire ${\mathbb{R}^n}$ , or it stays bounded. Moreover, in the former case, ${\Gamma(t)}$ converges to the unit sphere when normalized, and in the latter case, ${u \to 0}$ uniformly. When ${g(u) = au - bu^2}$ , we further prove that in the case ${\Omega(t)}$ expands to ${{\mathbb R}^n}$ , ${u \to a/b}$ as ${t \to \infty}$ , and the spreading speed of the free boundary converges to a positive constant; moreover, there exists ${\mu^* \geqq 0}$ such that ${\Omega(t)}$ expands to ${{\mathbb{R}}^n}$ exactly when ${\mu > \mu^*}$ .  相似文献   

2.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

3.
For every ${\varepsilon > 0}$ , we consider the Green’s matrix ${G_{\varepsilon}(x, y)}$ of the Stokes equations describing the motion of incompressible fluids in a bounded domain ${\Omega_{\varepsilon} \subset \mathbb{R}^d}$ , which is a family of perturbation of domains from ${\Omega\equiv \Omega_0}$ with the smooth boundary ${\partial\Omega}$ . Assuming the volume preserving property, that is, ${\mbox{vol.}\Omega_{\varepsilon} = \mbox{vol.}\Omega}$ for all ${\varepsilon > 0}$ , we give an explicit representation formula for ${\delta G(x, y) \equiv \lim_{\varepsilon\to +0}\varepsilon^{-1}(G_{\varepsilon}(x, y) - G_0(x, y))}$ in terms of the boundary integral on ${\partial \Omega}$ of ${G_0(x, y)}$ . Our result may be regarded as a classical Hadamard variational formula for the Green’s functions of the elliptic boundary value problems.  相似文献   

4.
We consider the steady Stokes and Oseen problems in bounded and exterior domains of ${\mathbb{R}^n}$ of class C k-1,1 (n = 2, 3; k ≥ 2). We prove existence and uniqueness of a very weak solution for boundary data a in ${W^{2-k-1/q,q} (\partial\Omega)}$ . If ${\Omega}$ is of class ${C^\infty}$ , we can assume a to be a distribution on ${\partial\Omega}$ .  相似文献   

5.
In this paper, we consider the Cauchy problem for a nonlinear parabolic system ${u^\epsilon_t - \Delta u^\epsilon + u^\epsilon \cdot \nabla u^\epsilon + \frac{1}{2}u^\epsilon\, {\rm div}\, u^\epsilon - \frac{1}{\epsilon}\nabla\, {\rm div}\, u^\epsilon = 0}$ in ${\mathbb {R}^3 \times (0,\infty)}$ with initial data in Lebesgue spaces ${L^2(\mathbb {R}^3)}$ or ${L^3(\mathbb {R}^3)}$ . We analyze the convergence of its solutions to a solution of the incompressible Navier?CStokes system as ${\epsilon \to 0}$ .  相似文献   

6.
In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

7.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

8.
This paper deals with an initial-boundary value problem for the system $$\left\{ \begin{array}{llll} n_t + u\cdot\nabla n &=& \Delta n -\nabla \cdot (n\chi(c)\nabla c), \quad\quad & x\in\Omega, \, t > 0,\\ c_t + u\cdot\nabla c &=& \Delta c-nf(c), \quad\quad & x\in\Omega, \, t > 0,\\ u_t + \kappa (u\cdot \nabla) u &=& \Delta u + \nabla P + n \nabla\phi, \qquad & x\in\Omega, \, t > 0,\\ \nabla \cdot u &=& 0, \qquad & x\in\Omega, \, t > 0,\end{array} \right.$$ which has been proposed as a model for the spatio-temporal evolution of populations of swimming aerobic bacteria. It is known that in bounded convex domains ${\Omega \subset \mathbb{R}^2}$ and under appropriate assumptions on the parameter functions χ, f and ?, for each ${\kappa\in\mathbb{R}}$ and all sufficiently smooth initial data this problem possesses a unique global-in-time classical solution. The present work asserts that this solution stabilizes to the spatially uniform equilibrium ${(\overline{n_0},0,0)}$ , where ${\overline{n_0}:=\frac{1}{|\Omega|} \int_\Omega n(x,0)\,{\rm d}x}$ , in the sense that as t→∞, $$n(\cdot,t) \to \overline{n_0}, \qquad c(\cdot,t) \to 0 \qquad \text{and}\qquad u(\cdot,t) \to 0$$ hold with respect to the norm in ${L^\infty(\Omega)}$ .  相似文献   

9.
Within the Landau–de Gennes theory, the order parameter describing a biaxial nematic liquid crystal assigns a symmetric traceless 3 × 3 matrix Q with three distinct eigenvalues to every point of the region Ω occupied by the system. In the constrained case of matrices Q with constant eigenvalues, the order parameter space is diffeomorphic to the eightfold quotient ${\mathbb{S}^3/\mathcal{H}}$ of the 3-sphere ${\mathbb{S}^3}$ , where ${\mathcal{H}}$ is the quaternion group, and a configuration of a biaxial nematic liquid crystal is described by a map from Ω to ${\mathbb{S}^3/\mathcal{H}}$ . We express the (simplest form of the) Landau–de Gennes elastic free-energy density as a density defined on maps ${q: \Omega \to \mathbb{S}^3}$ , whose functional dependence is restricted by the requirements that (1) it is well defined on the class of configuration maps from Ω to ${\mathbb{S}^3/\mathcal{H}}$ (residual symmetry) and (2) it is independent of arbitrary superposed rigid rotations (frame indifference). As an application of this representation, we then discuss some properties of the corresponding energy functional, including coercivity, lower semicontinuity and strong density of smooth maps. Other invariance properties are also considered. In the discussion, we take advantage of the identification of ${\mathbb{S}^3}$ with the Lie group of unit quaternions ${Sp(1) \cong SU(2)}$ and of the relations between quaternions and rotations in ${\mathbb{R}^3}$ and ${\mathbb{R}^4}$ .  相似文献   

10.
11.
Consider a smooth bounded domain ${\Omega \subseteq {\mathbb{R}}^3}$ , a time interval [0, T), 0?<?T?≤?∞, and a weak solution u of the Navier–Stokes system. Our aim is to develop several new sufficient conditions on u yielding uniqueness and/or regularity. Based on semigroup properties of the Stokes operator we obtain that the local left-hand Serrin condition for each ${t\in (0,T)}$ is sufficient for the regularity of u. Somehow optimal conditions are obtained in terms of Besov spaces. In particular we obtain such properties under the limiting Serrin condition ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ . The complete regularity under this condition has been shown recently for bounded domains using some additional assumptions in particular on the pressure. Our result avoids such assumptions but yields global uniqueness and the right-hand regularity at each time when ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ or when ${u(t)\in L^3(\Omega)}$ pointwise and u satisfies the energy equality. In the last section we obtain uniqueness and right-hand regularity for completely general domains.  相似文献   

12.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   

13.
This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, $$\partial_t u = \partial_{xx} u + f(x,u),$$ associated with a compactly supported initial datum. A typical nonlinearity we consider is ${f(x,u) = \mu_0 (\phi (x)) u(1-u)}$ , where??? 0 is a 1-periodic function and ${\phi}$ is a ${\mathcal{C}^1}$ increasing function that satisfies ${\lim_{x \to+\infty}\phi (x) = +\infty}$ and ${\lim_{x \to +\infty}\phi' (x) =0}$ . Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for u for large times, depending on the speed of the convergence of ${\phi}$ at infinity. If ${\phi}$ grows sufficiently slowly, then we prove that the spreading speed of u oscillates between two distinct values. If ${\phi}$ grows rapidly, then we compute explicitly a unique and well determined speed of propagation w ??, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors.  相似文献   

14.
In this paper we study the time-dependent complex Ginzburg–Landau equation with a nonlinear absorbing term in ${\Omega \times(0,T),\, \Omega }$ open bounded set in ${\mathbb{R}^{n}}$ . We prove global existence and uniqueness of solutions for the initial and boundary-value problem and study the properties of localization and extinction of solutions in some special cases.  相似文献   

15.
We consider the evolution problem associated with a convex integrand ${f : \mathbb{R}^{Nn}\to [0,\infty)}$ satisfying a non-standard p, q-growth assumption. To establish the existence of solutions we introduce the concept of variational solutions. In contrast to weak solutions, that is, mappings ${u\colon \Omega_T \to \mathbb{R}^n}$ which solve $$ \partial_tu-{\rm div} Df(Du)=0 $$ weakly in ${\Omega_T}$ , variational solutions exist under a much weaker assumption on the gap q ? p. Here, we prove the existence of variational solutions provided the integrand f is strictly convex and $$\frac{2n}{n+2} < p \le q < p+1.$$ These variational solutions turn out to be unique under certain mild additional assumptions on the data. Moreover, if the gap satisfies the natural stronger assumption $$ 2\le p \le q < p+ {\rm min}\big \{1,\frac{4}{n} \big \},$$ we show that variational solutions are actually weak solutions. This means that solutions u admit the necessary higher integrability of the spatial derivative Du to satisfy the parabolic system in the weak sense, that is, we prove that $$u\in L^q_{\rm loc}\big(0,T; W^{1,q}_{\rm loc}(\Omega,\mathbb{R}^N)\big).$$   相似文献   

16.
The injection of supercritical carbon dioxide ( $\text{ CO}_{2})$ in deep saline aquifers leads to the formation of a $\text{ CO}_{2}$ rich phase plume that tends to float over the resident brine. As pressure builds up, $\text{ CO}_{2}$ density will increase because of its high compressibility. Current analytical solutions do not account for $\text{ CO}_{2}$ compressibility and consider a volumetric injection rate that is uniformly distributed along the whole thickness of the aquifer, which is unrealistic. Furthermore, the slope of the $\text{ CO}_{2}$ pressure with respect to the logarithm of distance obtained from these solutions differs from that of numerical solutions. We develop a semianalytical solution for the $\text{ CO}_{2}$ plume geometry and fluid pressure evolution, accounting for $\text{ CO}_{2}$ compressibility and buoyancy effects in the injection well, so $\text{ CO}_{2}$ is not uniformly injected along the aquifer thickness. We formulate the problem in terms of a $\text{ CO}_{2}$ potential that facilitates solution in horizontal layers, with which we discretize the aquifer. Capillary pressure is considered at the interface between the $\text{ CO}_{2}$ rich phase and the aqueous phase. When a prescribed $\text{ CO}_{2}$ mass flow rate is injected, $\text{ CO}_{2}$ advances initially through the top portion of the aquifer. As $\text{ CO}_{2}$ is being injected, the $\text{ CO}_{2}$ plume advances not only laterally, but also vertically downwards. However, the $\text{ CO}_{2}$ plume does not necessarily occupy the whole thickness of the aquifer. We found that even in the cases in which the $\text{ CO}_{2}$ plume reaches the bottom of the aquifer, most of the injected $\text{ CO}_{2}$ enters the aquifer through the layers at the top. Both $\text{ CO}_{2}$ plume position and fluid pressure compare well with numerical simulations. This solution permits quick evaluations of the $\text{ CO}_{2}$ plume position and fluid pressure distribution when injecting supercritical $\text{ CO}_{2}$ in a deep saline aquifer.  相似文献   

17.
In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation ${{\rm d}X(t) = {\rm div} \left[\frac{\nabla X(t)}{|\nabla X(t)|}\right]{\rm d}t + X(t){\rm d}W(t) {\rm in} (0, \infty) \times \mathcal{O},}$ where ${\mathcal{O}}$ is a bounded and open domain in ${\mathbb{R}^N, N \geqq 1}$ and W(t) is a Wiener process of the form ${W(t) = \sum^{\infty}_{k = 1}\mu_{k}e_{k}\beta_{k}(t), e_{k} \in C^{2}(\overline{\mathcal{O}}) \cap H^{1}_{0}(\mathcal{O}),}$ and ${\beta_{k}, k \in \mathbb{N}}$ are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in ${L^2(\mathcal{O})}$ , it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions ${1\leqq N \leqq3}$ , which is another main result of this work.  相似文献   

18.
In this paper, we consider the generalized Navier?CStokes equations where the space domain is ${\mathbb{T}^N}$ or ${\mathbb{R}^N, N\geq3}$ . The generalized Navier?CStokes equations here refer to the equations obtained by replacing the Laplacian in the classical Navier?CStokes equations by the more general operator (???) ?? with ${\alpha\in (\frac{1}{2},\frac{N+2}{4})}$ . After a suitable randomization, we obtain the existence and uniqueness of the local mild solution for a large set of the initial data in ${H^s, s\in[-\alpha,0]}$ , if ${1 < \alpha < \frac{N+2}{4}, s\in(1-2\alpha,0]}$ , if ${\frac{1}{2} < \alpha\leq 1}$ . Furthermore, we obtain the probability for the global existence and uniqueness of the solution. Specially, our result shows that, in some sense, the Cauchy problem of the classical Navier?CStokes equation is local well-posed for a large set of the initial data in H ?1+, exhibiting a gain of ${\frac{N}{2}-}$ derivatives with respect to the critical Hilbert space ${H^{\frac{N}{2}-1}}$ .  相似文献   

19.
In a previous paper (Dehghanpour et al., Phys Rev E 83:065302, 2011a), we showed that relative permeability of mobilized oil, $k_\mathrm{ro}$ , measured during tertiary gravity drainage, is significantly higher than that of the same oil saturation in other tests where oil is initially a continuous phase. We also showed that tertiary $k_\mathrm{ro}$ strongly correlates to both water saturation, $S_\mathrm{w}$ , water flux (water relative permeability), $k_\mathrm{rw}$ , and the change in water saturation with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . To develop a model and understanding of the enhanced oil transport, identifying which of these parameters ( $S_\mathrm{w},\,k_{\mathrm{rw}}$ , or $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ ) plays the controlling role is necessary, but in the previous experiments these could not be deconvolved. To answer the remaining question, we conduct specific three-phase displacement experiments in which $k_{\mathrm{rw}}$ is controlled by applying a fixed water influx, and $S_\mathrm{w}$ develops naturally. We obtain $k_{\mathrm{ro}}$ by using the saturation data measured in time and space. The results suggest that steady-state water influx, in contrast to transient water displacement, does not enhance $k_{\mathrm{ro}}$ . Instead, reducing water influx rate results in excess oil flow. Furthermore, according to our pore scale hydraulic conductivity calculations, viscous coupling and fluid positioning do not sufficiently explain the observed correlation between $k_{\mathrm{ro}}$ and $S_{\mathrm{w}}$ . We conclude that tertiary $k_{\mathrm{ro}}$ is controlled by the oil mobilization rate, which in turn is linked to the rate of water saturation decrease with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . Finally, we develop a simple model which relates tertiary $k_{\mathrm{ro}}$ to transient two-phase gas/water relative permeability.  相似文献   

20.
We study the rheological behavior of mixtures of foams and pastes, which can be described as suspensions of bubbles in yield stress fluids. Model systems are designed by mixing monodisperse aqueous foams and concentrated emulsions. The elastic modulus of the bubble suspensions is found to depend on the elastic capillary number $\textit{Ca}_{_G}$ , defined as the ratio of the paste elastic modulus to the bubble capillary pressure. For values of $\textit{Ca}_{_G}$ larger than $\simeq 0.5$ , the dimensionless elastic modulus of the aerated material decreases as the bubble volume fraction $\phi $ increases, suggesting that bubbles behave as soft elastic inclusions. Consistently, this decrease is all the sharper as $\textit{Ca}_{_G}$ is high, which accounts for the softening of the bubbles as compared to the paste. By contrast, we find that the yield stress of most studied materials is not modified by the presence of bubbles. This suggests that their plastic behavior is governed by the plastic capillary number $\textit{Ca}_{\tau_y}$ , defined as the ratio of the paste yield stress to the bubble capillary pressure. At low $\textit{Ca}_{\tau_y}$ values, bubbles behave as nondeformable inclusions, and we predict that the suspension dimensionless yield stress should remain close to unity, in agreement with our data up to $\textit{Ca}_{\tau_y}=0.2$ . When preparing systems with a larger target value of $\textit{Ca}_{\tau_y}$ , we observe bubble breakup during mixing, which means that they have been deformed by shear. It then seems that a critical value $\textit{Ca}_{\tau_y}\simeq 0.2$ is never exceeded in the final material. These observations might imply that, in bubble suspensions prepared by mixing a foam and a paste, the suspension yield stress is always close to that of the paste surrounding the bubbles. Finally, at the highest $\phi $ investigated, the yield stress is shown to increase abruptly with $\phi $ : this is interpreted as a “foamy yield stress fluid” regime, which takes place when the paste mesoscopic constitutive elements (here, the oil droplets) are strongly confined in the films between the bubbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号