首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction mechanisms between AlH (1Σ) and HF molecule are theoretically investigated. Ab initio calculations demonstrate that there are two parallel reaction channels: one is an addition reaction to give H2AlF via the three‐membered ring transition state (TS) and the other is a dehydrogenation reaction to give AlF+H2 via the four‐membered ring TS. The addition reaction is thermodynamically favorable and the dehydrogenation reaction is kinetically favorable. Thermodynamics and Eyring transition state theory (TST) with the Wigner correction are also used to compute the thermodynamic functions, the equilibrium constants, A factors, and the rate constants of these reaction channels at 200–1000 K. From the thermodynamics and TST calculations, it is valuable to point out that consideration on the entropy and thermal enthalpy is quite important in the study of chemical reactions on the basis of ab initio method. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 417–424, 1999  相似文献   

2.
Portions of the [S, H3, X] (X=F, Cl) potential energy surfaces (PESs) were explored using the RHF, MP2, and QCISD(T) methods with emphasis on H2 and HX eliminations, SH3X→SHX+H2 and SH3X→SH2+HX, respectively. Upon the halogen X substitution, the most favorable decomposition pathway of SH4 went over to HX elimination, proceeding with a very low activation barrier of 6.9 (X=F) and 1.3 (X=Cl) kcal/mol. Moreover, the transition states (TSs) for H2 elimination from SH3X resembled the less favorable homopolar TS of SH4. Upon the X=F substitution, the barrier to H2 loss of SH4 was calculated to increase from 19.5 to 21.5 kcal/mol. For X=Cl, only the indirect H2 elimination path via the SH2+HCl→SHCl+H2 exchange was found. The hydrogen‐exchange reaction SH2+HX→SH2+HX was predicted to occur through formation of the hydrogen‐bonded complex XHSH2 and with a relatively high barrier of 43.5 (X=F) and 38.5 (X=Cl) kcal/mol. FHSH2 and ClHSH2 were found to be the lowest energy species on the [S, H3, F] and [S, H3, Cl] PESs, lying 53.4 and 44.7 kcal/mol below SH3F and SH3Cl, respectively. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 37–43, 1999  相似文献   

3.
The mechanism of the cycloaddition reaction between singlet silylene silylene (H2Si?Si:) and acetone has been investigated with the CCSD (T)//MP2/6‐31G?? method. According to the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2+2] cycloaddition reaction of the two π‐bonds in silylene silylene (H2Si?Si:) and acetone leads to the formation of a four‐membered ring silylene (E3). Because of the unsaturated property of Si: atom in E3, it further reacts with acetone to form a silicic bis‐heterocyclic compound (P7). Simultaneously, the ring strain of the four‐membered ring silylene (E3) makes it isomerize to a twisted four‐membered ring product (P4).  相似文献   

4.
The mechanism of the cycloaddition reaction between singlet germylene silylene (H2GeSi:) and acetone has been investigated with CCSD(T)/6‐31G*//MP2/6‐31G* method. From the potential energy profile, we could predict that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2+2] cycloaddition reaction of the two (‐bonds in germylene silylene and acetone generates a four‐membered ring silylene with Ge. Because of the unsaturated property of Si atom in the four‐membered ring silylene with Ge, it could further react with acetone, resulting in the generation of a bis‐heterocyclic compound with Si and Ge. Simultaneously, the ring strain of the four‐membered ring silylene with Ge makes it isomerize to a twisted four‐membered ring product.  相似文献   

5.
The reaction Sc+(1D)+H2S→Sc+S+H2 is theoretically investigated by ab initio MO methods. Two possible reaction channels on the singlet potential surface (PES) and the reaction mechanism are examined and discussed. Three regions of the potential surface were studied, the molecular complex, the S‐H insertion products and the transition states for the reaction. In addition the singlet and triplet PESs of this reaction system are compared in an investigation the chemistry of excited electronic state. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 60–64, 2001  相似文献   

6.
A theoretical study of the mechanism and the kinetics for the hydrogen abstraction reaction of the biradical hydroperoxy radical has been presented at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) level of theory. Our theoretical calculations suppose a stepwise mechanism involving the formation of a postreactant complex in the triplet and singlet entrance channels. Four transition states of the six‐membered chain complexes (3TS1 and 1TS1) and six‐membered ring complexes (3TS2 and 1TS2) are located at the high dual level CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G(d,p) method. The rate constants of Path 1 ~ Path 4 at the CCSD(T)/6‐311++G(3d,2p)//CCSD/6‐31+G (d,p) level are calculated by means of the conventional transition state theory (TST) and canonical variational TST without and with small‐curvature tunneling (SCT) correction within the temperature range of 200–2,500 K. The calculated results show that the triplet channel is the dominating reaction channel and Path 2 is found to be the most favorable pathway. The rate constants of Path 2 are in good agreement with the experimental values at the experimentally measured temperatures. Moreover, the variational effect is not obvious in the low temperature range but is not neglectable in the high temperature range. The SCT plays an important role particularly in the low temperature range. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
“Increased-valence” mechanisms are formulated for the generalized dehydrogenation reactions SH2 + O2 → S + H2O2 and SH2 + RNNR → S + RNH-NHR, in which SH2 is assumed to be coordinated to a transition metal ion. The role of the metal ion in these mechanisms is to assist with the homolytic breaking of the S-H and NN bonds  相似文献   

8.
The NCO + C2H4 reaction is simple and prototype for reaction of the NCO radical with unsaturated hydrocarbons, and it is considered to be important in fuel‐rich combustion. In this article, we for the first time perform detailed theoretical investigations for its reaction mechanism based on Gaussian‐3//B3LYP scheme covering various entrance and decomposition channels. The most favorable channel is firstly the NCO and C2H4 approach each other, forming a weakly‐bound complex L1 OCN···C2H4, followed by the formation of isomer L2 OCNCH2CH2 via a small barrier of 1.3 kcal/mol. Transition states of any decomposable or isomeric channels for L2 in energy are much higher than reactants, which indicate that adduct L2 has stabilization effect in this NCO + C2H4 reaction. The direct H‐abstraction channel leading to P1 HNCO + C2H3, might have an important contribution to the eventual products in high temperature. These results can well explain available kinetic experiment. Moreover, reaction mechanism for the title reaction is significantly different from the NCO + C2H2 reaction which proceeds on most favorably to generate the products HCN + HCCO and OCCHCN + H via a four‐membered ring intermediate. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
At ultrahigh pressure (>110 GPa), H2S is converted into a metallic phase that becomes superconducting with a record Tc of approximately 200 K. It has been proposed that the superconducting phase is body‐centered cubic H3S (Im m, a=3.089 Å) resulting from the decomposition reaction 3 H2S→2 H3S+S. The analogy between H2S and H2O led us to a very different conclusion. The well‐known dissociation of water into H3O+ and OH? increases by orders of magnitude under pressure. H2S is anticipated to behave similarly under pressure, with the dissociation process 2 H2S→H3S++SH? leading to the perovskite structure (SH?)(H3S+). This phase consists of corner‐sharing SH6 octahedra with SH? ions at each A site (the centers of the S8 cubes). DFT calculations show that the perovskite (SH?)(H3S+) is thermodynamically more stable than the Im m structure of H3S, and suggest that the A site hydrogen atoms are most likely fluxional even at Tc .  相似文献   

10.
Using ab initio MO calculations at the MP2/6‐311G(2df,2pd) level of theory the most stable structures of the following seven ions were determined: H3S+ (C3v), H2S–SH+ (Cs), H2S–S–SH+ (C1), HS–S(H)–SH+ (C1), H2S–S–S–SH+ (C1), HS–S(H)–S–SH+ (C1) and S(SH)3+ (C3). In the case of the isomeric H3S3+ cations the species protonated at the terminal sulfur atom is most stable while in the case of the H3S4+ ions the protonation at the β sulfur atom is energetically preferred. However, the energy differences between isomeric cations are rather small. At the same level of theory the wavenumbers of the harmonic fundamental vibrations were calculated and compared to the available experimental data leading to a support for the existing assignments in certain cases but in some cases to revisions. The reaction enthalpies and Gibbs free energies of the proton transfer reactions H2Sn + H2Sn+1 → H3Sn+ + HSn+1 were calculated by the G2 method. For n = 1–3 the enthalpies are found in the range 639–731 kJ mol–1.  相似文献   

11.
The O(3P) + C2H2 reaction plays an important role in hydrocarbon combustion. It has two primary competing channels: H + HCCO (ketenyl) and CO + CH2 (triplet methylene). To further understand the microscopic dynamic mechanism of this reaction, we report here a detailed quasi-classical trajectory study of the O(3P) + C2H2 reaction on the recently developed full-dimensional potential energy surface (PES). The entrance barrier TS1 is the rate-limiting barrier in the reaction. The translation of reactants can greatly promote reactivity, due to strong coupling with the reaction coordinate at TS1. The O(3P) + C2H2 reaction progress through a complex-forming mechanism, in which the intermediate HCCHO lives at least through the duration of a rotational period. The energy redistribution takes place during the creation of the long-lived high vibrationally (and rotationally) excited HCCHO in the reaction. The product energy partitioning of the two channels and CO vibrational distributions agree with experimental data, and the vibrational state distributions of all modes of products present a Boltzmann-like distribution.  相似文献   

12.
The iminoborane tBuB≡NtBu and the diazomethane tBuCH=N2 give the (2+3) cycloadduct [—HC(tBu)—N=N—N(tBu)=B(tBu)—] in a 1:1 reaction and the seven‐membered ring [—C(tBu)=N—NH—N(tBu)=B(tBu)—N(tBu)=B(tBu)—] in a 2:1 reaction. The (2+3) cycloadduct decomposes above 0 °C to give the seven‐membered ring, N2, and HC(tBu)=N—N=CH(tBu) in the ratio 2:1:1. The borane tBuB≡NtBu and organic azides R″N3 yield the (2+3) cycloadducts [—R″N—N=N—N(tBu)=B(tBu)—] (R″ = Me, Et, Pr, Bu, iBu, sBu, C5H11, c‐C5H9, c‐C6H11, Bzl, EtOOC).  相似文献   

13.
The vicinal P/B frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 undergoes 1,1‐carboboration reactions with the Me3Si‐substituted enynes to give ring‐enlarged functionalized C3‐bridged P/B FLPs. These serve as active FLPs in the activation of dihydrogen to give the respective zwitterionic [P]H+/[B]H? products. One such product shows activity as a metal‐free catalyst for the hydrogenation of enamines or a bulky imine. The ring‐enlarged FLPs contain dienylborane functionalities that undergo “bora‐Nazarov”‐type ring‐closing rearrangements upon photolysis. A DFT study had shown that the dienylborane cyclization of such systems itself is endothermic, but a subsequent C6F5 migration is very favorable. Furthermore, substituted 2,5‐dihydroborole products are derived from cyclization and C6F5 migration from the photolysis reaction. In the case of the six‐membered annulation product, a subsequent stereoisomerization reaction takes place and the resultant compound undergoes a P/B FLP 1,2‐addition reaction with a terminal alkyne with rearrangement.  相似文献   

14.
Reaction mechanisms for the isomerization of prostaglandin H2 to thromboxane A2, and degradation to 12‐L‐hydroxy‐5,8,10‐heptadecatrienoic acid (HHT) and malondialdehyde (MDA), catalyzed by thromboxane synthase, were investigated using the unrestricted Becke‐three‐parameter plus Lee–Yang–Parr (UB3LYP) density functional level theory. In addition to the reaction pathway through FeIV‐porphyrin intermediates, a new reaction pathway through FeIII‐porphyrin π‐cation radical intermediates was found. Both reactions proceed with the homolytic cleavage of endoperoxide O? O to give an alkoxy radical. This intermediate converts into an allyl radical intermediate by a C? C homolytic cleavage, followed by the formation of thromboxane A2 having a 6‐membered ring through a one electron transfer, or the degradation into HHT and MDA. The proposed mechanism shows that an iron(III)‐containing system having electron acceptor ability is essential for the 6‐membered ring formation leading to thromboxane A2. Our results suggest that the step of the endoperoxide O? O homolytic bond cleavage has the highest activation energy following the binding of prostaglandin H2 to thromboxane synthase.  相似文献   

15.
The kinetics and mechanisms of the HCO reactions with HONO and HNOH have been studied at the G2M level of theory based on the geometric parameters optimized at BH&HLYP/6‐311G(d,p). The rate constants in the temperature range 200–3000 K at different pressures have been predicted by microcanonical RRKM and/or variational transition state theory calculations with Eckart tunneling corrections. For the HCO + HONO reaction, hydrogen abstraction from trans‐HONO and cis‐HONO by HCO produces H2CO + NO2, with the latter being dominant. Two other channels involving cis‐HONO by the association/decomposition mechanism via the HC(O)N(O)OH intermediate, which could fragment to give H2O + CO + NO at high temperatures, were also found to be important. For the HCO + HNOH reaction, three reaction channels were identified: one association reaction giving a stable intermediate, HC(O)N(H)OH (LM2), and two hydrogen abstraction channels producing H2CO and H2NOH. The dominant products were predicted to be the formation of LM2 at low temperatures and H2NOH + CO at middle and high temperatures. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 178–187 2004  相似文献   

16.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

17.
The singlet and triplet potential energy surfaces involved in N++SH2 reactions have been explored using high‐level ab initio techniques. The geometries of the stationary points were optimized at the QCISD/6‐311G(df,p) level. The final energies were obtained in CCSD(T)/6‐311+G(3df,2p) single‐point calculations. The results obtained show that, although the N+(1D)+SH2 entrance channel is higher in energy than the N+(3P)+SH2 one, most of the [H2, S, N]+ singlet state cations are lower in energy than the corresponding triplets, due to their different bonding characteristics. Both singlet and triplet potential energy surfaces are quite close each other, and crossover between them can occur. The minimum energy crossing points were located by means of CASSCF(6,5) calculations. The spin‐orbit couplings show that the transition probability from the triplet to the singlet potential energy surface is significantly large. One of the most important consequences is that some of the products of the reaction, such as SH+, can be formed in typical spin‐forbidden processes. Since all the relevant structures along these pathways are much lower in energy than the reactants, this mechanism should be accessible even at low impact energies and therefore could be important in processes taking place in interstellar media. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

18.
Reaction of NaAlH4 with Primer Silylphosphines and Silylarsines: Synthesis and Crystal Structure of a Cyclic Sodium Phosphanylalanate and a Polycyclic Sodium Arsanylalanate The reaction of sodium aluminium hydride with H2PSiMe3 in the molar ratio 1:4 yields the compound [H2Al{P(SiMe3)2}2Na(dme)2] ( 1 ). Central structural motif of this compound in a four‐membered AlP2Na ring. Surprisingly the phosphorus atoms in the ring wear two exocyclic silylgroups each. From the reaction of NaAlH4 with the primer silylarsine H2AsSiiPr3 in THF the ionic compound 2 can be obtained. In this compound cyclic [(H2Al)3(AsSiiPr3)3]3‐ anions coordinate the sodium counter‐ions by the hydride ligands as well as by the arsenic atoms.  相似文献   

19.
Sulfur offers a variety of bonding surprises compared to the parent oxygen atom of the chalcogen family. In the present work, we employ standard quantum chemistry methods to characterize formation of previously unrecognized sulfur tetrahydride (C4v-symmetric SH4) from hydrogen sulfide (H2S) and molecular hydrogen (H2) on the ground state potential energy surface. The unusual intramolecular interactions of SH4 defy Lewis-like bonding conceptions, exhibiting the dominance of resonance-type donor-acceptor delocalizations well beyond those of SF4 (C2v sawhorse geometry) and other known tetrahalides. The distressed character of SH4 bonding also leads to exotic intermolecular structural motifs in clusters of pure (SH4)n and mixed (SH4⋅⋅⋅H2S)n composition. We evaluate structural, spectroscopic, and electronic properties for various 2D/3D coordination patterns and discuss how (SH4⋅⋅⋅H2S)n-type building blocks may relate to recent experimental studies of superconductivity in high-pressure materials of “SH3” stoichiometry.  相似文献   

20.
Ab initio Hartree—Fock calculations with STO-3G functions have been performed to determine the structure (1.371 Å and 95.33°) of SH+3 and the proton affinity (≈196 kcal/mol) of H2S. Inclusion of a sulphur 3d function in the basis has been found essential to give a better geometry of SH+3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号