首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azole. 44.     
The structure analyses of racemic 3‐chloro‐1‐(4‐morpholino‐5‐nitro­imidazol‐1‐yl)­propan‐2‐ol, C10H15ClN4O4, (II), and 3‐chloro‐1‐(5‐morpholino‐4‐nitro­imidazol‐1‐yl)­propan‐2‐ol, C10H15ClN4O4, (III), have been undertaken in order to determine the position of the morpholine residue in these two isomers. The morpholine residue in (II) is connected at the 4‐position, while in (III), it is connected at the 5‐position of the imidazole ring. The morpholine mean planes and nitro groups in the two compounds deviate from the imidazole planes to different extents. The nitro groups in (II) and (III) take part in the conjugation system of the imidazole rings. In consequence, the exocyclic C—N bonds are significantly shorter than the normal single Csp2—NO2 bond and the nitro groups in (II) and (III) show an extraordinary stability on treatment with morpholine and piperidine [Gzella, Wrzeciono & Pöppel (1999). Acta Cryst. C 55 , 1562–1565]. In the crystal lattice, the mol­ecules of both compounds are linked by O—H?N and C—H?O intermolecular hydrogen bonds.  相似文献   

2.
In 2,4‐di­hydroxy­benz­aldehyde 2,4‐di­nitro­phenyl­hydrazone N,N‐di­methyl­form­amide solvate {or 4‐[(2,4‐di­nitro­phenyl)­hydrazono­methyl]­benzene‐1,3‐diol N,N‐di­methyl­form­amide solvate}, C13H10N4O6·C3H7NO, (X), 2,4‐di­hydroxy­aceto­phenone 2,4‐di­nitro­phenyl­hydrazone N,N‐di­methyl­form­am­ide solvate (or 4‐{1‐[(2,4‐di­nitro­phenyl)hydrazono]ethyl}benzene‐1,3‐diol N,N‐di­methyl­form­amide solvate), C14H12N4O6·C3H7NO, (XI), and 2,4‐di­hydroxy­benzo­phenone 2,4‐di­nitro­phenyl­hydrazone N,N‐di­methyl­acet­amide solvate (or 4‐­{[(2,4‐di­nitro­phenyl)hydrazono]phenyl­methyl}benzene‐1,3‐diol N,N‐di­methyl­acet­amide solvate), C19H14N4O6·C4H9NO, (XII), the molecules all lack a center of symmetry, crystallize in centrosymmetric space groups and have been observed to exhibit non‐linear optical activity. In each case, the hydrazone skeleton is fairly planar, facilitated by the presence of two intramolecular hydrogen bonds and some partial N—N double‐bond character. Each molecule is hydrogen bonded to one solvent mol­ecule.  相似文献   

3.
In 2,6‐di­iodo‐4‐nitro­phenol, C6H3I2NO3, the mol­ecules are linked, by an O—H?O hydrogen bond and two iodo–nitro interactions, into sheets, which are further linked into a three‐dimensional framework by aromatic π–π‐stacking interactions. The mol­ecules of 2,6‐di­iodo‐4‐nitro­phenyl acetate, C8H5I2NO4, lie across a mirror plane in space group Pnma, with the acetyl group on the mirror, and they are linked by a single iodo–nitro interaction to form isolated sheets. The mol­ecules of 2,6‐di­iodo‐4‐nitro­anisole, C7H5I2NO3, are linked into isolated chains by a single two‐centre iodo–nitro interaction.  相似文献   

4.
The absolute configuration of the title compound, alter­natively called (+)‐(4,5‐di­hydro‐2,5‐di­phenyl­oxazol‐4‐yl)­methanol, C16H15NO2, has been confirmed as 4S,5S. The hydroxy­methyl group and phenyl ring at the asymmetric C atoms exhibit β and α orientations, respectively. The exocyclic C—C bonds at the asymmetric C atoms are mutually anticlinal (?ac). The hydroxyl group and the N atom of the oxazoline ring are involved in an intermolecular hydrogen bond leading to chains of mol­ecules.  相似文献   

5.
In the crystal structures of (4‐nitro­phenyl­sulfanyl­methyl)­tri­phenyl­stannane, [Sn(C6H5)3(C7H6NO2S)], (I), and (4‐nitro­phenyl­sulfonyl­methyl)­tri­phenyl­stannane, [Sn(C6H5)3­(C7H6NO4S)], (II), the mol­ecules are linked by paired C—H?O hydrogen bonds into centrosymmetric dimers which combine to form sheets. In (I), two such dimers form to give R(10) and R(24) rings. In (II), similar dimers form, here with R(10) and R(18) rings, but with an additional dimer due to the presence of the sulfone group, giving R(10) rings. In both structures, C—H?π interactions lead to a doubling of the width of the sheets.  相似文献   

6.
The structures of the two title isomeric compounds (systematic names: N‐meth­yl‐N,2‐dinitro­aniline and N‐meth­yl‐N,3‐di­nitro­aniline, both C7H7N3O4) are slightly different because they exhibit different steric hindrances and hydrogen‐bonding environments. The aromatic rings are planar. The –N(Me)NO2 and –NO2 groups are not coplanar with the rings. Comparison of the geometric parameters of the ortho, meta and para isomers together with those of N‐meth­yl‐N‐phenyl­nitramine suggests that the position of the nitro group has a strong influence on the aromatic ring distortion. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds to the nitramine group.  相似文献   

7.
The title compound, C18H19NO4, is the key synthetic intermediate in the preparation of α,α‐di­benzyl‐α‐amino acid (di­benzyl­glycine, Dbg), the disubstituted homologue of phenyl­alanine, following the di­alkyl­ation of ethyl nitro­acetate. The mol­ecule does not have its potential mirror symmetry in the crystal, with the two benzyl groups forming N—C—C—C torsion angles of 60.31 (13) and 79.89 (13)°.  相似文献   

8.
The crystal structures of the four E,Z,E isomers of 1‐(4‐alk­oxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, namely (E,Z,E)‐1‐(4‐methoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C19H17NO3, (E,Z,E)‐1‐(4‐ethoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C20H19NO3, (E,Z,E)‐1‐(4‐nitro­phen­yl)‐6‐(4‐n‐propoxyphen­yl)hexa‐1,3,5‐triene, C21H21NO3, and (E,Z,E)‐1‐(4‐n‐butoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C22H23NO3, have been determined. Inter­molecular N⋯O dipole inter­actions between the nitro groups are observed for the meth­oxy derivative, while for the eth­oxy derivative, two adjacent mol­ecules are linked at both ends through N⋯O dipole–dipole inter­actions between the N atom of the nitro group and the O atom of the eth­oxy group to form a supra­molecular ring‐like structure. In the crystal structures of the n‐prop­oxy and n‐but­oxy derivatives, the shortest inter­molecular distances are those between the two O atoms of the alk­oxy groups. Thus, the nearest two mol­ecules form an S‐shaped supra­molecular dimer in these crystal structures.  相似文献   

9.
The mol­ecule of 3,5‐di­fluoro‐4‐nitro­pyridine N‐oxide, C5H2F2N2O3, is twisted around the C—NO2 bond by 38.5 (1)°, while the 3,5‐di­amino analogue, 3,5‐di­amino‐4‐nitro­pyridine N‐oxide monohydrate, C5H6N4O3·H2O, adopts a planar conformation stabilized by intramolecular hydrogen bonds, with a significant redistribution of π electrons.  相似文献   

10.
In 2‐hydroxy‐3‐iodo‐5‐nitro­benz­aldehyde, C7H4INO4, the mol­ecules are linked into sheets by a combination of C—H⋯O hydrogen bonds and two‐centre iodo–nitro interactions, and these sheets are linked by aromatic π–π stacking interactions. Molecules of 2,4‐di­iodo‐6‐nitro­anisole, C7H5I2NO3, are disordered, with the nitro group and one of the I substituents each occupying common sets of sites with 0.5 occupancy. The mol­ecules are linked into isolated centrosymmetric dimeric units by a single iodo–nitro interaction.  相似文献   

11.
Two of the title compounds, namely (E)‐1,2‐bis­(1‐methyl­benzimidazol‐2‐yl)ethene, C18H16N4, (Ib), and (E)‐1,2‐bis­(1‐ethyl­benzimidazol‐2‐yl)ethene, C20H20N4, (Ic), consist of centrosymmetric trans‐bis­(1‐alkyl­benzimidazol‐2‐yl)ethene mol­ecules, while 3‐eth­yl‐2‐[(E)‐2‐(1‐ethyl­benzimidazol‐2‐yl)­ethen­yl]benzimidazol‐1‐ium perchlorate, C20H21N4+·ClO4, (II), contains the monoprotonated analogue of compound (Ic). In the three structures, the benzimidazole and benzimidazolium moieties are essentially planar; the geometric parameters for the ethene linkages and their bonds to the aromatic groups are consistent with double and single bonds, respectively, implying little, if any, conjugation of the central C=C bonds with the nitro­gen‐containing rings. The C—N bond lengths in the N=C—N part of the benzimidazole groups differ and are consistent with localized imine C=N and amine C—N linkages in (Ib) and (Ic); in contrast, the corresponding distances in the benzimidazolium cation are equal in (II), consistent with electron delocalization resulting from protonation of the amine N atom. Crystals of (Ib) and (Ic) contain columns of parallel mol­ecules, which are linked by edge‐over‐edge C—H⋯π overlap. The columns are linked to one another by C—H⋯π inter­actions and, in the case of (Ib), C—H⋯N hydrogen bonds. Crystals of (II) contain layers of monocations linked by π–π inter­actions and separated by both perchlorate anions and the protruding eth­yl groups; the cations and anions are linked by N—H⋯O hydrogen bonds.  相似文献   

12.
The crystal structures of three 4‐amino derivatives of 7‐nitro‐2,1,3‐benzoxa­diazole with increasing substituent ring size, viz. 7‐nitro‐4‐(pyrrolidin‐1‐yl)‐2,1,3‐benzoxa­diazole, C10H10N4O3, 7‐nitro‐4‐(piperidin‐1‐yl)‐2,1,3‐benzoxa­diazole, C11H12N4O3, and 4‐(azepan‐1‐yl)‐7‐nitro‐2,1,3‐benzoxa­diazole, C12H14N4O3, have been determined in order to understand their photophysical behaviour. All three were found to crystallize in centrosymmetric space groups. There is considerable electron delocalization compared with the parent compound, although the five‐membered oxa­diazole ring apparently does not participate in this. The length of the C—N bond between the amino N atom and the 7‐nitro­benzoxa­diazole system is found to be shorter than in similar compounds, as is the C—Nnitro bond. In each structure, the nitro group lies in the plane of the benzoxa­diazole unit.  相似文献   

13.
The title di­phenyl­carbene porphyrin complex (di­phenyl­carbenyl‐κC)(methanol‐κO)(5,10,15,20‐tetra‐p‐tolyl­por­phy­rin­ato‐κ4N)ruthenium(II) methanol solvate, [Ru­(C13H10)(C48H36N4)(CH4O)]·CH4O, has a six‐coordinate Ru atom with a methanol mol­ecule as the second axial ligand. The carbene fragment is slightly distorted from an ideal sp2 configuration, with a C(phenyl)—C(carbene)—C(phenyl) angle of 112.2 (3)°. The Ru—C bond length of 1.845 (3) Å is comparable with other carbene complexes. The two phenyl rings of the carbene ligand are perpendicular to the carbene plane. Methanol solvate mol­ecules link the methanol ligands of adjacent porphyrin complexes via hydrogen bonds.  相似文献   

14.
In the title compound, [Y(C6H3N2O5)3(H2O)3], the Y atom is nine‐coordinate with a slightly distorted tricapped trigonal prismatic coordination geometry. The YIII ion is coordinated to three bidentate 2,6‐di­nitro­phenolate ligands and three water mol­ecules. The Y—O bond distances are in the range 2.217 (3)–2.754 (4) Å, with the Y—O distances from the nitro groups being longer than those from the water mol­ecules and the phenol groups. The coordinated NO2 groups are almost coplanar with the benzene rings.  相似文献   

15.
A combinatorial chemistry approach has been used to synthesize an array of Schiff bases, five of which, namely N‐[(E,2E)‐3‐(4‐methoxy­phenyl)‐2‐propenyl­idene]‐3‐nitro­aniline, C16H14N2O3, (1a), N‐[(E,2E)‐3‐(4‐methoxy­phenyl)‐2‐propenyl­idene]‐4‐nitro­aniline, C16H14N2O3, (2a), N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐3‐nitro­aniline, C17H17N3O2, (1b), N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐4‐nitro­aniline, C17H17N3O2, (2b), and N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐2‐methyl‐4‐nitro­aniline, C18H19N3O2, (3b), have been structurally characterized. A stack structure is observed for (1a) and (1b) in the crystal phase. Experimental and calculated molecular structures are discussed for these compounds which belong to a chemical class having potential applications as non‐linear optical materials.  相似文献   

16.
In 2‐amino‐4,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, the mol­ecules are linked by one N—H⋯N and one N—H⋯O hydrogen bond to form sheets built from alternating R(8) and R(32) rings. In isomeric 4‐amino‐2,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, which crystallizes with Z′ = 2 in P, the two independent mol­ecules are linked into a dimer by two independent N—H⋯N hydrogen bonds. These dimers are linked into sheets by a combination of two‐centre C—H⋯O and three‐centre C—H⋯(O)2 hydrogen bonds, and the sheets are further linked by two independent aromatic π–π‐stacking interactions to form a three‐dimensional structure.  相似文献   

17.
The title compound, di­methyl 10b′‐(4‐fluoro­styryl)‐8′,9′‐di­methoxy‐4‐nitro‐5′,6′‐di­hydrospiro­[9H‐fluorene‐9,1′(10bH)‐pyrrolo­[2,1‐a]­iso­quinoline]‐2′,3′‐di­carboxyl­ate, C38H31FN2O8, is a new photochromic tetra­hydro­indolizine. One of the C—C bonds at the spiro C atom is very long [1.630 (2) Å], thus explaining the photochromic behaviour.  相似文献   

18.
The Sn atom in the crystal structure of the title compound,catena‐poly­[trimethyl­tin‐μ‐[(2,5‐di­oxo‐2,5‐di­hydro­pyrrol‐1‐yl)­acetato‐O:O′]], [Sn(CH3)3(C6H4NO4)], adopts a distorted trigonal bipyramidal coordination geometry with three methyl groups defining the trigonal plane [mean Sn—C 2.117 (11) Å] and the axial positions occupied by O atoms from different carboxylate groups, with significantly different Sn—O bond lengths [2.207 (5) and 2.358 (6) Å]. The structure forms a polymeric chain of complex molecules linked via carboxylate moieties.  相似文献   

19.
In the first bis­[ruthenium(II)–porphyrin]–dicarbene complex, μ‐[1,4‐phenyl­ene­bis(phenyl­methyl­idene‐κC)]bis­[(ethanol‐κO)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)ruthenium(II)] 1,2‐di­chloro­ethane trisolvate, [Ru2(C20H14)(C48H36N4)2(C2H6O)2]·3C2H4Cl2, an inversion center is located at the center of the μ‐phenyl­ene group, leading to a parallel arrangement for the pair of porphyrin ring systems. The bond lengths and angles compare favourably with literature values for ruthenium–porphyrin–monocarbene complexes; the Ru=C(carbene) bond length and the C(phenyl)—C(carbene)—C(phenyl­ene) angle are 1.865 (3) Å and 112.3 (3)°, respectively. The RuII ion is displaced out of the C20N4 porphyrin least‐squares plane (by 0.2373 Å) toward the bridging ligand of the Ci‐symmetry dimer. The porphyrin ring systems of the dimer thus exhibit mildly domed conformations.  相似文献   

20.
The title compound, C6H2N6O10·2C2H4Cl2, forms layered stacks of penta­nitro­aniline mol­ecules, which possess twofold symmetry. The voids between these stacks are occupied by dichloro­ethane mol­ecules, which reside near a 2/m symmetry element and display pseudo‐inversion symmetry. The C atoms in one of the two solvent mol­ecules are threefold disordered. In the penta­nitro­aniline mol­ecule, considerable distortion of the benzenoid ring, coupled with the short C—N(H2) bond and out‐of‐plane NO2 twistings, point to significant intra­molecular `push–pull' charge transfer at the amino‐ and nitro‐substituted (ortho and para) positions, as theoretically quantified by natural bond orbital analysis of the π‐electron density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号