首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

2.
The photograft polymerization of various vinyl monomers onto nanosized silica surfaces was investigated. It was initiated by eosin moieties introduced onto the silica surface. The preparation of the silica with eosin moieties was achieved by the reaction of eosin with benzyl chloride groups on the silica surface.These were introduced by the reaction of surface silanol groups with 4‐(chloromethyl)phenyltrimethoxysilane in the presence of t‐butyl ammonium bromide as a phase‐transfer catalyst. The photopolymerization of various vinyl monomers, such as styrene, acrylamide, acrylic acid, and acrylonitrile was successfully initiated by eosin moieties on the silica surface in the presence of ascorbic acid as a reducing agent and by oxygen. The corresponding polymers were grafted from the silica surface. The grafting efficiency (percentage of grafted polymer to total polymer formed) in the photoinitiation system was much larger than that in the radical polymerization initiated by surface radicals; these radicals were formed by the thermal decomposition of azo groups introduced onto the silica surface. It was found that the polymer‐grafted silica gave stable dispersions in good solvents of grafted polymer and the wettability of the surfaces can be easily controlled by grafting of polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 600–606, 2005  相似文献   

3.
To graft polymers with controlled molecular weight and narrow molecular weight distribution, the grafting of polymers onto ultrafine silica surface by the termination of living polymer cation with amino groups introduced onto the surface was investigated. The introduction of amino or N-phenylamino groups onto the silica surface was achieved by the treatment of silica with γ-aminopropyltriethxysilane or N-phenyl-γ-aminopropyltrimethoxysilane. It was found that these amino groups on silica are readily reacted with living poly(isobutyl vinyl ether) (polyIBVE), which was generated with CF3COOH/ZnCl2 initiating system, and polyIBVE with controlled molecular weight and narrow molecular weight distribution is grafted onto the surface. By the termination of living poly(2-methyl-2-oxazoline), which was generated with methyl p-toluenesulfonate initiator, with amino groups on silica, polyMeOZO was also grafted onto the surface. The percentage of grafting of polymer onto the silica surface decreased with increasing molecular weight of the living polymer, because the steric hindrance of silica surface increases with increasing molecular weight of living polymer. Polymer-grafted silica gave a stable dispersion in a good solvent for grafted chains. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The radical graft polymerization of vinyl monomers, such as styrene and methyl methacrylate, initiated by azo groups introduced onto silica nanoparticle and carbon black surfaces in room temperature ionic liquid (IL) were investigated. In this work, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([C4mim][PF6]) was used as IL. The percentage of polystyrene and poly(methyl methacrylate) grafting onto silica nanoparticle and carbon black increased with increasing reaction time. The percentage of grafting in IL was much larger than that in 1,4‐dioxane. The molecular weight of polystyrene grafted onto the silica surface in IL was almost equal to that in 1,4‐dioxane. The result indicates that the amount of grafted polystyrene in IL is five times that in 1,4‐dioxane. This may be due to the fact that lifetime of the surface radical formed by the group of azo is prolonged because of high viscosity of IL. Therefore, the surface azo groups were effectively used as initiating sites for the graft polymerization. In addition, the reduction of waste solvent was achieved by use of IL as reaction solvent, because unreacted monomer could be removed under vacuum after the reaction and the reuse of IL was easily achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1143–1149, 2007  相似文献   

5.
The surface of silica was modified by mercaptopropyl, chloropropyl, aminopropyl, and methacryloxypropyl groups by the treatment of silica with the corresponding silane coupling agents, and the effects of functional groups on the surface on the polymerization of vinyl monomers initiated by benzoyl peroxide or 2,2-azobisisobutyronitrile were investigated. Although the rate of the polymerization of vinyl monomers in the presence of silica was almost equal to that in the absence of silica, a part of polymer formed was grafted onto silica surface. The polymerization was considerably retarded in the presence of these functionalized silicas and the corresponding polymers were effectively grafted onto the surface. The molecular weight of ungrafted polymer formed in the presence of the functionalized silica was lower than that formed in the presence of unmodified silica. This indicates that the chain transfer reaction of growing polymer radical to functionalized silica surface forms radicals on the surface, which then couples with growing polymer radical and/or reinitiates the polymerization to give rise to the grafting of polymers onto the surface. In the case of silica having methacryloxypropyl groups, the grafting based on the copolymerization of vinyl monomer with the surface methacryloxypropyl groups was considered to successfully proceed.  相似文献   

6.
The photografting of polymers onto ultrafine inorganic particles, such as silica and titanium oxide, initiated by azo groups introduced onto these surfaces was investigated. The introduction of azo groups onto the particles was achieved by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with surface isocyanate groups, which were introduced by the treatment with tolylene 2,4-diisocyanate. It was found that the photopolymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and N-vinylcarbazole, is initiated by ultrafine particles having azo groups. The corresponding polymers were effectively grafted onto these surfaces through the propagation of the polymer from the surface radicals formed by the photodecomposition of the azo groups: e.g., the percentage of grafting of PMMA and polystyrene onto silica was reached to 112 and 176%, respectively. The percentage of grafting onto silica in the graft polymerization initiated by photodecomposition of surface azo groups was much larger than that initiated by thermal decomposition. Polymer-grafted ultrafine particles thus obtained gave a stable colloidal dispersion in good solvents for the grafted chain. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
This paper describes the radical graft polymerization of vinyl monomers from glass fiber surface initiated by alkylazo groups introduced onto the fiber surface. The introduction of azo groups onto the glass fiber surface was achieved by reaction of isocyanate groups which were previously attached onto the surface with two kinds of azo initiators, 4,4′-azobis(4-cyanopentanoic acid) (ACPA) and 2,2′-azobis(2-cyanopropanol) (ACP). The amounts of surface azo groups introduced by ACPA and ACP were both determined to be 1.3 × 10−5 mol g−1 by nitrogen analysis. The radical graft polymerization of methyl methacrylate (MMA) was found to be initiated in the presence of the glass fiber having surface azo groups. During the polymerization, part of resultant poly(MMA) grafted onto the fiber surface through propagation of the polymer from the surface radicals produced by the decomposition of the azo groups. The percentage of grafting of poly(MMA) reached 48.1% after 24 h. The graft polymerizations of other monomers, such as styrene, N-vinylcarbazole, and acrylic acid, were also initiated by the surface azo groups, and the corresponding polymer effectively grafted onto the surface. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2121–2128, 1999  相似文献   

8.
The introduction of peroxide groups onto carbon black surface was achieved through the trapping of the peroxide radicals formed by the decomposition of polymeric peroxide, such as poly(tetraethylene glycol peroxyadipate) (ATPPO), and bis-peroxide, such as 1,1′-bis (t-butyldioxy)cyclohexane (Perhexa-C), by the surface: the amount of peroxide groups introduced onto carbon black surface by the treatment with ATPPO and Perhexa-C were determined to be 0.07 mmol/g and 0.12 mmol/g, respectively. The polymerization of vinyl monomers with positive e-value, such as methyl methacrylate and 2-hydroxyethy methacrylate, was successfully initiated by the peroxide groups introduced onto carbon black surface. During the polymerization, the corresponding polymers were effectively grafted onto the surface as a result of the propagation of polymer from the surface radicals formed by decomposition of the peroxide groups. The polymerization of vinyl monomers with negative e-value, such as styrene and vinyl acetate, however, was scarcely initiated by the peroxide groups on carbon black. This may be due to the fact that surface active radicals, which were formed by the hydrogen abstraction from carbon black by fragment radicals, inhibit the polymerization of vinyl monomers with negative e-value. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Grafting of biocompatible polymer onto the surface of silica nanoparticles was achieved by radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), initiated by azo groups previously introduced onto the surface or by a system consisting of Mo(CO)6 and trichloroacetyl groups on the silica surface. Both of these systems have the ability to initiate graft polymerization of MPC, resulting in the formation of poly(MPC)-grafted silica, but the percentage of poly(MPC) grafting for the latter initiating system was much higher than that of the former. The amount of moisture that could be adsorbed onto the silica surface was found to increase with increasing poly(MPC) grafting. This indicates that grafting of poly(MPC) onto the silica surface markedly increases the hydrophilic nature of the surface. The contact angle of water in composites prepared from poly(vinyl alcohol) and poly(MPC)-grafted silica was found to decrease with increasing poly(MPC)-grafted silica content. When poly(MPC)-grafted silica was added to water containing a small amount of chloroform, it was found to act as stabilizer for droplets of chloroform. In addition, according to tests by the Lee-White method, poly(MPC)-grafted silica shows non-thrombogenic characteristics.  相似文献   

10.
In order to synthesize block copolymers consisting of segments having dissimilar properties, vinyl polymer - poly (α-amino acid) block copolymers were synthesized by two different methods. In the first method, the terminal amino groups of polysarcosine, poly(γ-benzyl L-glutamate), and poly(γ-benzyloxycarbonyl-L-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly (α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mo (CO)6 or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino cid) (the A component) and vinyl polymer(the B component). The characterization of block copolymers revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was most suitable for the synthesis of vinyl polymer - poly-(α-amino acid) block copolymers. In the second method, poly (methyl methacrylate) and polystyrene having a terminal amino group were synthesized by the radical polymerization in the presence of 2-mercaptoethylammonium chloride. Using these polymers having a terminal amino group as an initiator, the block polymerizations of γ-benzyl L-glutamate NCA and e-benzyloxycarbonyl-L-lysine NCA were carried out, yielding A-B-type block copolymer. By eliminating the protecting groups of the side chains of poly(α-amino acid) segment, block copolymers such as poly(methyl methacrylate) with poly(L-glutamic acid) or poly(L-lysine) and polystyrene with poly(L-glutamic acid) and poly(L-lysine) were successfully synthesized.  相似文献   

11.
The surface grafting onto ultrafine silica via reverse ATRP of methyl methacrylate initiated by peroxide groups introduced onto the surface and conventional ATRP of Styrene initiated by the hybrid nanoparticles were investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polymer layer. The polymerization was closely controlled in solution at quite low temperature such as 70 °C. In both cases, linear kinetic plots, linear plots of molecular weight (Mn) versus conversion, in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (Mw/Mn) for the grafted polymer samples were observed. Hydrolysis of silica cores by hydrofluoric acid treatment enabled characterization of cleaved polymer using GPC. Ultrathin films of hybrid nanoparticles were examined using TEM and AFM.  相似文献   

12.
For the purpose of the prevention of the environmental pollution and the simplification of reaction process, the scale-up radical graft polymerization of vinyl monomers onto nano-sized silica surface initiated by azo groups and peroxycarbonate groups previously introduced onto the surface in the solvent-free dry-system was investigated. The introduction of azo groups onto the silica surface was achieved by the reaction of surface amino groups with 4,4′-azobis(4-cyanopentanoic acid chloride). On the other hand, the introduction of peroxycarbonate groups onto the silica surface was achieved by Michael addition of surface amino groups to t-butylperoxy-2-methacryloyloxyethylcarbonate. The graft polymerization of vinyl monomers onto the surface was successfully achieved by splaying monomers to nano-sized silica having azo and peroxycarbonate groups in solvent-free dry-system. It is interesting to note that the formation of ungrafted polymer was depressed in comparison with graft polymerization in solution: the grafting efficiency was 90-95%. In addition, in the solvent-free dry-system, the grafting of copolymer having pendant peroxycarbonate groups onto the nano-sized silica surface and the radical postgraft polymerization of styrene initiated by the pendant initiating groups of the grafted copolymer chain on the silica surface was investigated.  相似文献   

13.
The surface grafting onto ultrafine silica by the radical polymerization of methyl methacrylate (MMA) initiated by peroxide groups introduced onto the surface was investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. The content of diisopropylbenzene peroxide and tert-butyl peroxide groups introduced onto the silica according to the above method was determined to be 0.11 and 0.08 mmol/g, respectively. It was found that the polymerization of MMA is initiated by silica having these peroxide groups. In the polymerization, polyMMA was grafted onto silica surface: the percentage of grafting reached about 70%. Therefore, it was concluded that the polymerization of MMA is initiated by surface radicals formed by the decomposition of peroxide groups on silica and polyMMA is grafted through the propagation from the surface. During the polymerization, ungrafted polyMMA was also formed because of the formation of initiator fragments by the decomposition of peroxide groups: the grafting efficiency of the graft polymerization was 30–40%. PolyMMA-grafted silica produced a stable colloidal dispersion in organic solvents for polyMMA. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
Abstract

The cationic graft polymerization of vinyl monomers onto a carbon whisker, vapor-grown carbon fiber, initiated by acylium perchlorate groups introduced onto the surface, was investigated. The introduction of acylium perchlorate groups onto a carbon whisker was achieved by the treatment of a carbon whisker having acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride, with silver perchlorate in nitrobenzene. It was found that the cationic polymerization of vinyl monomers, such as styrene, indene, N-vinyl-2-pyrrolidone, and n-butyl vinyl ether, is initiated by acylium perchlorate groups on a carbon whisker. In the polymerization, the corresponding vinyl polymers were grafted onto a carbon-whisker surface based on the propagation of polymer from the surface: the percentage of grafting of polystyrene and polyindene reached 42.5 and 100.3%, respectively. The percentage of polystyrene grafting decreased with increasing polymerization temperature because of preferential chain transfer reactions at higher temperatures. Polymer-grafted carbon whisker gave a stable colloidal dispersion in a good solvent for grafted polymer.  相似文献   

15.
In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.  相似文献   

16.
To improve the surface of carbon fiber, the grafting reaction of copolymer containing vinyl ferrocene (VFE) onto a carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber was investigated. The copolymer containing VFE was prepared by the radical copolymerization of VFE with vinyl monomers, such as methyl methacrylate (MMA) and styrene, using 2,2′‐azobisisobutyronitrile as an initiator. By heating the carbon fiber with poly(VFE‐co‐MMA) (number‐average molecular weight: 2.1 × 104) in the presence of aluminum chloride and aluminum powder, the copolymer was grafted onto the surface. The percentage of grafting reached 46.1%. On the contrary, in the absence of aluminum chloride, no grafting of the copolymer was observed. Therefore, it is considered that the copolymer was grafted onto the carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber. The molar number of grafted polymer chain on the carbon‐fiber surface decreased with increasing molecular weight of poly(VFE‐co‐MMA) because the steric hindrance of grafted copolymer on the carbon‐fiber surface increases with increasing molecular weight of poly(VFE‐co‐MMA). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1868–1875, 2002  相似文献   

17.
Rigid and monodisperse spherical polymer particles with 2.36 ± 0.18 μm diameter containing residual surface vinyl groups were prepared by photoinitiated precipitation polymerization of divinylbenzene. Anti‐Markovnikov addition of HBr to the surface vinyl groups yielded a 2‐bromoethyl functionality that was used as macroinitiator for atom transfer radical polymerization (ATRP), providing the possibility for further functionalization by controlled “grafting from” processes. This was demonstrated by grafting of glycidyl methacrylate brushes from the particle surface, using an ATRP system based on CuBr and pentamethyl diethylenetriamine. Existence of a methacrylic overlayer was verified by FTIR and XPS measurements, and the grafted particles were easily dispersed in water, confirming conversion of the particle surface from hydrophobic to hydrophilic. Hydrobromination of residual vinyl groups yields a macroinitiator that can be used for grafting of glycidyl methacrylate by ATRP. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1259–1265, 2009  相似文献   

18.
This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by ‘grafting from’ polymerization initiated by a redox system comprising ceric ion (Ce4+) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by ‘grafting from’ polymerization initiated by the redox reaction of Ce4+ with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process.  相似文献   

19.
The radical graft polymerization of vinyl monomers from carbon black initiated by azo groups introduced onto the surface was investigated. The introduction of azo groups onto carbon black surface was achieved by three methods: the reaction of 2,2′-azobis[2-(2-imidazolin-2-yl)propane] (AIP) with (1) epoxide groups, which were introduced by the reaction of carbon black with chlorometh-yloxirane; (2) acyl chloride groups, which were introduced by the reaction of carboxyl groups on the surface with thionyl chloride; and (3) 3-chloroformyl-1-cyano-1-methylpropyl groups, which were introduced by the reaction of carbon black with 4,4′-azobis(4-cyanovaleric acid) and then thionyl chloride. The amount of azo groups introduced onto the surface by the above methods was determined to be 0.07-0.19 mmol/g. The graft polymerization of methyl methacrylate was found to be initiated by azo groups introduced onto the carbon black surface. During the polymerization, poly(methyl methacrylate) was effectively grafted onto carbon black through propagation of the polymer from the radical produced on the surface by the decomposition of the azo groups. The percentage of grafting using carbon black having azo groups introduced by method 1 increased to 40%. It was also found that the graft polymerization of several vinyl monomers such as styrene, acrylonitrile, and acrylic acid was initiated by the azo groups introduced onto the surface and the corresponding polymer was effectively grafted onto the surface. Furthermore, the effect of the amount of carbon black having azo groups on the graft polymerization was investigated.  相似文献   

20.
The radiation-induced multiple-graft polymerization was studied by an ESR method. When methyl methacrylate vapor was introduced onto preirradiated polyethylene already grafted with styrene, the second step of grafting of methyl methacrylate occurred mainly in the polyethylene portion. The kinetic treatment proved that the termination rate constant kt of methyl methacrylate decreased with the amount of styrene grafted in advance. On the other hand, when styrene vapor was introduced onto polyethylene grafted with methyl methacrylate, only radicals of poly(methyl methacrylate) decreased. In this case, the second step of grafting of styrene occurred in the poly-(methyl methacrylate) portion which covered the whole surface of the polyethylene powder. When monomer vapors were alternately introduced onto preirradiated polyethylene powder, the second step of grafting occurred at the growing chain end of the first monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号