首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis of hybrid star‐shaped polymers was carried out by atom transfer radical polymerization of n‐butyl acrylate from a well‐defined multifunctional titanium‐oxo‐cluster initiator. Conditions were identified to prevent possible side reactions among monomer, polymer, and the titanium‐oxo‐cluster ligands. Polymerizations provided linear first‐order kinetics and the evolution of the experimental molecular weight is also linear with the conversion. 1H DOSY NMR and cleavage of the polymeric branches from the multifunctional initiator by hydrolysis were used to (i) prove the star‐shaped structure of the polymer, and (ii) demonstrate that the shoulder observed on size exclusion chromatograms is not due to a noncontrolled polymerization but to ungrafting of polymeric branches during analysis. Rheological properties of the hybrid star‐shaped poly(n‐butyl acrylate) were studied in the linear regime and show that the Ti‐oxo‐cluster not only increases significantly the viscosity of the polymer relative to its ungrafted arm but has a rheological signature which is qualitatively different from that of stars with organic cores suggesting that the Ti cluster reduces significantly the molecular mobility of the star. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

3.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

4.
Well‐defined star polymers were synthesized with a combination of the core‐first method and atom transfer radical polymerization. The control of the architecture of the macroinitiator based on β‐cyclodextrin bearing functional bromide groups was determined by 13C NMR, fast atom bombardment mass spectrometry, and elemental analysis. In a second step, the polymerization of the tert‐butyl acrylate monomer was optimized to avoid a star–star coupling reaction and allowed the synthesis of a well‐defined organosoluble polymer star. The determination of the macromolecular dimensions of these new star polymers by size exclusion chromatography/light scattering was in agreement with the structure of armed star polymers in a large range of predicted molecular weights. This article describes a new approach to polyelectrolyte star polymers by postmodification of poly(tert‐butyl acrylate) by acrylic arm hydrolysis in a water‐soluble system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5186–5194, 2005  相似文献   

5.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

6.
Well‐defined organic/inorganic hybrid fluorinated star polymers were synthesized via atom transfer radical polymerization (ATRP) of 2,2,3,4,4,4‐hexafluorobutyl methacrylate (HFBMA) using octa(aminophenyl)silsesquioxane (OAPS) nano‐cage as initiator. For this purpose, OAPS was transformed into ATRP initiator by reacting with 2‐bromoisobutyrylbromide. ATR polymerization of HFBMA was carried out in trifluorotoluene at 75 °C using CuCl/2,2‐bipyridine or N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst system. GPC and 1H NMR data confirmed the synthesis of OAPS/PHFBMA hybrid star polymer. Kinetics of the ATR polymerization of HFBMA using OAPS nano‐cage initiator was also investigated. The OAPS/PHFBMA hybrid stars were found to be molecularly dispersed in solution (THF); however, TEM micrographs revealed the formation of spherical particles of ~ 120–180 nm by the OAPS/PHFBMA hybrid star polymer after solvent evaporation. Thermal characterization of the nanocomposites by differential scanning calorimetry (DSC) revealed a slightly higher glass transition temperature (Tg) (when compared with the linear PHFBMA) of higher molecular weight OAPS/PHFBMA hybrid star polymers. In contrast, lower Tg than the linear PHFBMA was observed for OAPS/PHFBMA of relatively lower molecular weight (but higher than the linear PHFBMA). Thermal gravimetric analysis (TGA) showed a significant retardation (by ~60 °C) in thermal decomposition of nanocomposites when compared with the linear PHFBMA. Additionally, surface properties were evaluated by measuring the contact angles of water on polymer surfaces. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7287–7298, 2008  相似文献   

7.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

8.
Polydisperse hyperbranched polyesters were modified for use as novel multifunctional reversible addition–fragmentation chain‐transfer (RAFT) agents. The polyester‐core‐based RAFT agents were subsequently employed to synthesize star polymers of n‐butyl acrylate and styrene with low polydispersity (polydispersity index < 1.3) in a living free‐radical process. Although the polyester‐core‐based RAFT agent mediated polymerization of n‐butyl acrylate displayed a linear evolution of the number‐average molecular weight (Mn) up to high monomer conversions (>70%) and molecular weights [Mn > 140,000 g mol?1, linear poly(methyl methacrylate) equivalents)], the corresponding styrene‐based system reached a maximum molecular weight at low conversions (≈30%, Mn = 45,500 g mol?1, linear polystyrene equivalents). The resulting star polymers were subsequently used as platforms for the preparation of star block copolymers of styrene and n‐butyl acrylate with a polyester core with low polydispersities (polydispersity index < 1.25). The generated polystyrene‐based star polymers were successfully cast into highly regular honeycomb‐structured microarrays. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3847–3861, 2003  相似文献   

9.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

10.
The synthesis of A4B4 miktoarm star copolymers, where A is polytetrahydrofuran (PTHF) and B is polystyrene (PSt), was accomplished with orthogonal initiators and consecutive cationic ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). The compound formed in situ from the reaction of 3‐{2,2‐bis[2‐bromo‐2‐(chlorocarbonyl) ethoxy] methyl‐3‐(2‐chlorocarbonyl) ethoxy} propoxyl‐2‐bromopropanoyl chloride [C(CH2OCH2CHBrCOCl)4] with silver perchlorate was used to initiate the CROP of tetrahydrofuran. The obtained polymer contained four secondary bromine groups at the α position to the original initiator sites and was used to initiate the ATRP of styrene with a CuBr/2,2′‐bipyridine catalyst to form a C(PTHF)4(PSt)4 miktoarm star copolymer. The miktoarm copolymer was characterized by gel permeation chromatography and 1H NMR. The macroinitiator C(PTHF)4Br4 was hydrolyzed to afford PTHF arms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2134–2142, 2001  相似文献   

11.
We describe here the first example of the synthesis of 4‐arm star poly(acrylic acid) for use as a water‐soluble drag reducing agent, by applying Cu(0)‐mediated polymerization technique. High molecular weight 4‐arm star poly(tert‐butyl acrylate) (Mn = 3.0–9.0 × 105 g mol?1) was first synthesized using 4,4′‐oxybis(3,3‐bis(2‐bromopropionate)butane as an initiator and a simple Cu(0)/TREN catalyst system. Then, 4‐arm star poly(tert‐butyl acrylate) were subjected to hydrolysis using trifluoroacetic acid resulting in water‐soluble 4‐arm star poly(acrylic acid). Drag reduction test rig analysis showed 4‐arm star poly(acrylic acid) to be effective as a drag reducing agent with drag reduction of 24.3%. Moreover, 4‐arm star poly(acrylic acid) exhibited superior mechanical stability when compared with a linear poly(acrylic acid) and commercially available drag reducing polymers; Praestol and poly(ethylene oxide). The linear poly(acrylic acid), Praestol, and poly(ethylene oxide) all showed a large decrease in drag reduction of 8–12% when cycled 30 times through the drag reduction test rig while, in contrast, 4‐arm star poly(acrylic acid) demonstrated much higher mechanical stability. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 335–344  相似文献   

12.
A novel azo‐containing dithiocarbamate, 1‐phenylethyl N,N‐(4‐phenylazo) phenylphenyldithiocarbamate (PPADC), was successfully synthesized and used to mediate the polymerization of methyl acrylate (MA) and styrene (St). In the presence of PPADC, the reversible addition‐fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA, however, the slightly ill‐controlled in the case of St. Interestingly, the polymerization of St could be well‐controlled when using PPADC as the initiator in the presence of CuBr/PMDETA via atom transfer radical polymerization (ATRP) technique. In the cases of RAFT polymerization of MA and ATRP of St, the kinetic plots were both of first‐order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn). The molecular weight of the polymer measured by gel permeation chromatographer (GPC) was also close to the theoretical value (Mn(th)). The obtained polymer was characterized by 1H‐NMR analysis, ultraviolet absorption, FTIR spectra analysis and chain‐extension experiments. Furthermore, the photoresponsive behaviors of azobenzene‐terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5626–5637, 2008  相似文献   

13.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

14.
A new catalytic system, FeCl3/isophthalic acid, was successfully used in the reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) in the presence of a conventional radical initiator, 2,2′‐azo‐bis‐isobutyrontrile. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in an N,N‐dimethylformamide solvent at 90–120 °C. The polymerization was controlled up to a molecular weight of 50,000, and the polydispersity index was 1.4. Chain extension was performed to confirm the living nature of the polymer. The kinetics of the RATRP of MMA with FeCl3/isophthalic acid as the catalyst system was investigated. The apparent activation energy was 10.47 kcal/mol. The presence of the end chloride atom on the resulting PMMA was demonstrated by 1H NMR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 765–774, 2001  相似文献   

15.
Two novel multifunctional initiators for atom transfer radical polymerization (ATRP) were synthesized by derivatization of tetraethylresorcinarene. The derivatization induced a change in the conformation of the resorcinarene ring, which was confirmed by NMR spectroscopy. The initiators were used in ATRP of tert‐butyl acrylate and methyl methacrylate, producing star polymers with controlled molar masses and low polydispersities. Instead of the expected star polymers with eight arms, polymers with four arms were obtained. Conformational studies on the initiators by rotating‐frame nuclear Overhauser and exchange spectroscopy NMR and molecular modeling suggested that of eight initiator functional groups on tetraethylresorcinarene, four are too close to each other to be able to initiate the chain growth. Starlike poly(tert‐butyl acrylate) macroinitiators were used further in the block copolymerization of methyl methacrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4189–4201, 2004  相似文献   

16.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   

17.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

19.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

20.
Star‐branched polystyrenes, with polydispersity indices of 1.15–1.56 and 4–644 equal arms, were synthesized by the reaction of 2,2,6,6‐tetramethylpiperidin‐1‐yloxy (TEMPO)‐capped polystyrene (PS‐T) with divinylbenzene (DVB). The characterization of PS‐T and the final star polymers was carried out by size exclusion chromatography, low‐angle laser light scattering, and viscometry. The degree of branching of the star polymers depended on the DVB/PS‐T ratio and the PS‐T molecular weight. An asymmetric (or miktoarm) star homopolymer of the PSnPS′n type was made by the reaction of the PSn symmetric star, which had n TEMPO molecules on its nucleus and consisted of a multifunctional initiator, with extra styrene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 320–325, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号