首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《印度化学会志》2023,100(8):101069
This study focuses on the microwave-assisted synthesis of Cr2O3 nanoparticles for the development of antibacterial materials. Characterization techniques including FT-IR spectroscopy, UV–vis spectroscopy, SEM-EDX, and XRD, were employed to analyze the nanoparticles' properties. The antibacterial efficacy against E. coli, S. aureus, B. subtilis, and P. aeruginosa was evaluated, with significant activity observed against all pathogens, highlighting their potential as antibacterial materials. The novelty of this study lies in the synthesis of Cr2O3 nanoparticles and their application as potent antibacterial agents against various pathogens. The results of XRD study concludes the average size of Cr2O3 nanoparticles as 49.96 nm. The synthesized Cr2O3 nanoparticles demonstrated a good zone of inhibition against E. coli (22 mm), S. aureus (19 mm), B. subtilis (18 mm), and P. aeruginosa (21 mm). The findings of the study suggest that Cr2O3NPs have potential as a novel antibacterial agent, and further research in this area could lead to the development of new and effective treatments for bacterial infections.  相似文献   

2.
《Mendeleev Communications》2021,31(4):504-506
The pyridoxal derivatives of chitosan with various degrees of substitution (DS) were synthesized from low-, moderate- and high-molecular-weight chitosans by their reaction with pyridoxal followed by treatment with NaBH4. The derivative of moderate molecular weight and high DS demonstrated a maximum antibacterial activity against S. aureus and E. coli. The nanoparticles of this derivative obtained by ionic gelation are nontoxic, and they exhibit a high in vitro antibacterial effect, which slightly exceeds that of ampicillin and gentamicin.  相似文献   

3.
In the developing nanotechnology world, numerous attempts have been made to prepare the nobel metallic nanoparticles (NPs), which can improve their applicability in diverse fields. In the present work, the biosynthesis of silver (Ag) NPs has been successfully achieved through the medicinal plant extract (PE) of G. resinifera and effectively used for the catalytic and antibacterial applications. The size dependant tuneable surface plasmon resonance (SPR) properties attained through altering precursor concentrations. The X-ray and selected area diffraction pattern for Ag NPs revealed the high crystalline nature of pure Ag NPs with dominant (111) phase. The high-resolution TEM images show the non-spherical shape of NPs shifting from spherical, hexagonal to triangular, with wide particle size distribution ranging from 13 to 44 nm. Accordingly, the dual-band SPR spectrum is situated in the UV–Vis spectra validating the non-spherical shape of Ag NPs. The functional group present on the Ag NPs surface was analysed by FT-IR confirms the capping and reducing ability of methanolic PE G. resinifera. Further, the mechanism of antimicrobial activity studied using electron microscope showed the morphological changes with destructed cell walls of E. coli NCIM 2931 and S. aureus NCIM 5021 cells, when they treated with Ag NPs. The Ag NPs were more effective against S. aureus and E. coli with MIC 128 μg/ml as compared to P. aeruginosa NCIM 5029 with MIC 256 μg/ml. Apart from this, the reduction of toxic organic pollutant 4-NP to 4-AP within 20 min reveals the excellent catalytic activity of Ag NPs with rate constant k = 15.69 s?1.  相似文献   

4.
The silver nanoparticles (AgNPs) synthesized using hot water olive leaf extracts (OLE) as reducing and stabilizing agent are reported and evaluated for antibacterial activity against drug resistant bacterial isolates. The effect of extract concentration, contact time, pH and temperature on the reaction rate and the shape of the Ag nanoparticles are investigated. The data revealed that the rate of formation of the nanosilver increased significantly in the basic medium with increasing temperature. The nature of AgNPs synthesized was analyzed by UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis (TGA). The silver nanoparticles were with an average size of 20–25 nm and mostly spherical. The antibacterial potential of synthesized AgNPs was compared with that of aqueous OLE by well diffusion method. The AgNPs at 0.03–0.07 mg/ml concentration significantly inhibited bacterial growth against multi drug resistant Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). This study revealed that the aqueous olive leaf extract has no effect at the concentrations used for preparation of the Ag nanoparticles. Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future.  相似文献   

5.
Anti-inflammatory and antibacterial activities of some novel quinazolinones were determined. Evaluation of anti-inflammatory activity of test compounds was performed using carrageenan induced paw edema in rats. Oral administration of test compounds 25 mg/kg and 50 mg/kg reduced the paw edema significantly (P < 0.05) in a dose dependent manner compared to carrageenan induced rats. The test compounds were also screened for their antibacterial activity against the strains of Staphylococcus aureus and Escherichia coli at the concentrations of 200 μg/ml and 1 mg/ml. The test compounds showed better activity as that of the standard lincomycin at the tested higher concentration against S. aureus. None of the compounds exhibit comparable activity to that of the standard ceftazidime against E. coli.  相似文献   

6.

This study reports the development of anatase TiO2 synthesized by facile photon-induced method (PIM) at various reaction times of 6 days, 8 days, 10-day samples. The 10 days TiO2 sample shows stable anatase phase, whereas 100% rutile phase at the same temperature was observed for standard TiO2. Mainly, the PIM was used to tuning the properties of visible light absorbance TiO2 photocatalyst used for improving antibacterial performance. The antibacterial activity of TiO2 against Staphylococcus aureus and Escherichia coli was determined by the agar disc diffusion method. Anatase TiO2 nanoparticles demonstrated excellent antibacterial activity against extracellular S. aureus with 80% and E. coli with 82% killing efficacy at concentrations as low as 100 μg/mL, which is 100% faster than the standard and other pure TiO2 reported earlier. The obtained undoped anatase Titania with enhanced chemical reactivity has great potential for antibacterial properties. Moreover, the smaller crystallite size (25 nm) and narrowing bandgap (2.96 eV) TiO2 nanoparticles were more effective in killing bacteria compared with standard TiO2. Therefore, this work indicated that anatase phased TiO2 under visible light absorbance has good potential with excellent clinical applications.

  相似文献   

7.
Photodynamic therapy and photothermal therapy provide new ways to combat antibiotic resistance. In this research, methylene blue (MB) as an effective photosensitizer was conjugated with carbon quantum dots (CQDs), the composite product not only possessed good antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) due to excellent singlet oxygen (1O2) production rate and light heat transfer performance, but also showed good biocompatibility. Combined with 808 nm and 660 nm laser irradiation, the minimum bactericidal concentration of CQDs-MB towards S. aureus and E. coli was 5 μm . Therefore, this study provides a potential candidate material based on CQDs for clinical applications.  相似文献   

8.
Synthesis and biomedical research of bimetallic gold-silver nanoparticles (Au–Ag NPs) have gained much attention due to their unique properties. Antibacterial mechanism of gold-silver nanoparticles is a current topic of interest in nanomedicine engineering. We used three routes in the synthesis of Au–Ag NPs alloy: i) Co-reduction of [HOOC-4-C6H4NN]AuCl4/AgNO3, ii) Seeding of AuNPs-COOH/AgNO3 and iii) immobilization of AgNPs over the parent AuNPs-COOH. Two mild reducing agents, NaBH4 and 9-BBN (9-borabicyclo(3.3.1)nonane), were used. Colloidal alloy nanoparticles structure was confirmed using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The particles reduced using NaBH4 were larger (~20 nm) than those synthesized using 9-BBN (<10 nm). The synthesized nanoparticles showed high stability under notoriously leaching conditions of chloride-containing electrolytes. Moreover, we studied the Au–Ag NPs antibacterial activity against the growth of Gram-negative Escherichia coli ATCC strain 25922 and Gram-positive Staphylococcus aureus ATCC strain 29213. The antibacterial mechanisms were evaluated by studying the time-dependent generation of reactive oxygen species (ROS). A major destruction of the bacterial cell wall and leakage of cell components were observed by scanning electron microscopy (SEM), which is clearly visible towards E. coli more than S. aureus bacterial strain. The destruction of the bacterial cell wall was further confirmed by detecting the DNA leakage using gel electrophoresis. The synergistic effect of gold enhanced the antibacterial properties, however, with low cytotoxicity to human dermal fibroblast cells. This study deals with the important aspects of time-dependent mechanisms of the antibacterial action of Au–Ag NPs since the leaching out of Ag ion is slow compared to AgNPs. The Au–Ag NPs alloy efficiently tackles microbial activity that can be controlled to minimize cytotoxicity and thus opens their future applications as antibacterial agents.  相似文献   

9.
In this work, an ecofriendly and economic strategy for synthesize of CuO and Co3O4 were developed using extracted Sesbania sesban solution (ESS) as a reducing and stabilizing agent, and bioreactor. These novel nano metal oxides (NMOs) were characterized by high-resolution-transmission electron microscopy (TEM), EDAX thermo gravimetric analysis and X-ray diffraction (XRD). Morphology and size of them were investigated by TEM and the average sizes of for spherical CuO and Co3O4 nanoparticles are 20–40 and 15–30 nm, respectively. The XRD and EDAX confirmed the high purity for NMOs. The thermal behaviors of the NMOs exhibited good crystallographic stability within the investigated temperature range. The antioxidant and antibacterial activities of NMOs were investigated and compared to manganese(III) meso-tetraphenylporphyrin complex/Ag nanocomposite (Ag/P nanocomposite) synthesizing by ESS. The results obtained from this work showed that copper(II) oxide, cobalt oxide nanoparticles, and Ag/P nanocomposite have DPPH scavenging activity. On the other hand, NMOs have no antibacterial activity against Gram-negative bacterial strains. Cobalt oxide nanoparticles have antibacterial activity against Staphylococcus aureus, while Ag/P nanocomposite showed the antibacterial activities against both Gram-negative and Gram-positive bacterial strains.  相似文献   

10.
《印度化学会志》2022,99(3):100361
Inorganic nanocomposites, due to increased stability and safety, are gaining importance in wide range of engineering and medical applications. In view of this, the present study demonstrates the optical and antibacterial activity of core-shell ZnO@TiO2 nanoparticles synthesized via biogenic method using Azadirachta indica flower extract. The synthesized nanocomposite is characterized by XRD, TEM and EDS. The optical activity of the ZnO@TiO2 nanoparticle, assessed by photoluminescence spectra, indicated concentration dependent increase in the number of defects. The antibacterial activity of synthesized core-shell ZnO@TiO2 nanoparticles was determined by agar disc diffusion method against 9 clinical isolates (Gram positive - S. aureus, S. pneumonia, B. subtilis and Gram negative - E. coli, S. dysenteriae, K. pneumonia, V. cholera, P. aeruginosa, and P. vulgaris). The synthesized nanoparticle exhibited significant antibacterial activity against all the strains tested. The synthesized core-shell ZnO@TiO2 nanoparticle can be a potential antimicrobial candidate for various biomedical applications.  相似文献   

11.
A series of diazenyl schiff bases have been synthesized by reaction of salicylaldehyde containing azo dyes with various substituted aniline derivatives in the presence of acetic acid as catalyst. The structures of diazenyl derivatives were determined by FTIR, UV–vis, 1H NMR, 13C NMR, CHN analysis, fluorimetric and mass spectroscopic studies. The synthesized derivatives were screened for their in vitro antimicrobial activity against various Gram-positive (S. aureus, B. subtilis, B. cereus), Gram-negative (S. typhi, S. enterica, E. coli, P. aeruginosa) bacterial and fungal (C. albicans, A. niger and A. fumigatus) strains, using cefadroxil (antibacterial) and fluconazole (antifungal) as standard drugs. The diazenyl schiff bases were also screened for their cytotoxicity against human colorectal carcinoma cell line (HCT-116) using 5-fluorouracil as standard drug by Sulforhodamine-B Stain (SRB) assay. The schiff bases exhibited significant activity toward both Gram-positive, Gram-negative bacterial and fungal strains. Most of the synthesized derivatives showed high activity against S. enterica. 4-((2,5-Dichlorophenyl)diazenyl)-2-((3-bromophenylimino)methyl)phenol (SBN-40) was found to be very active against S. aureus, B. cereus and E. coli, with MIC = 0.69 (µM/ml × 102). The compound 4-((2-bromophenyl)diazenyl)-2-((4-nitrophenylimino)methyl)phenol (SBN-13) possessed comparable activity (IC50 = 7.5 µg/ml) to the standard drug 5-fluorouracil (IC50 = 3.0 µg/ml) against human colorectal carcinoma cell line (HCT-116).  相似文献   

12.
The biogenic approach in the synthesis of nanoparticles provides an efficient alternative to the chemical synthesis system. Furthermore, the ecofriendly synthesis of metallic nanoparticles is developing rapidly due to its wide applications in sciences. In this research, metallic silver nanoparticles (AgNPs) were biosynthesized using Sambucus ebulus (S. ebulus; AgNPs@SEE) extract for the evaluation of efficient antibacterial, anticancer, and photocatalyst activities. The reaction parameters including temperatures, contact time, and AgNO3 concentration were discussed and optimized. The optimized nanoparticles (AgNPs@SEE) showed cubic structure, spherical morphology with the average size of 35–50 nm. The photocatalytic performance of AgNPs was assessed by degradation of methyl orange at different concentrations of AgNPs@SEE (10 and 15 µl) under sun-light irradiation. About 95.89% of the pollutant was degraded (after 11 min), when 10 μl of nanocatalyst used. Also, the degradation of contaminant increased (about 95.47% after 7 min) by increasing the nanoparticle concentration to 20 μl. All in all, the results showed that the percentage of pollutant degradation increased with increasing the concentration of nanocatalyst. Furthermore, anticancer activity of AgNPs@SEE on human cancer cell lines (AGS and MCF-7), and antibacterial activity on both Gram-positive and Gram-negative microorganisms were studied. The synthesized AgNPs@SEE exhibited superior performance on cancer cell lines and effective antibacterial properties against Gram-positive microorganisms (like MIC value of 1.5 µg/ml for S. aureus) than Gram-negative microorganisms. All these investigations revealed that silver nanoparticles synthesized by natural extract have the potential to use as low-cost and efficient nanoparticles for environmental and biomedical applications.  相似文献   

13.
DNA gyrase is a promising target for antibacterial agents. Several classes of small-molecule inhibitors have been discovered in recent decades, but none of these have reached the market. We have designed a small library of 1,2,4-oxadiazole/pyrrolidine hybrids with mid nanomolar inhibitory and potent antibacterial activities against DNA gyrase and topoisomerase IV. Compounds 9, 15, 16, 19, and 21 inhibited Escherichia coli DNA gyrase to a similar extent as the reference compound, novobiocin, with inhibitory values ranging from 120 nM to 270 nM. Compound 16 was one of the most potent compounds in the series, with an IC50 value of 120 nM against E. coli gyrase, which is lower than the IC50 value of novobiocin (170 nM). Compound 16 had the highest inhibitory activity, with minimum inhibitory concentrations (MIC) of 24 and 62 ng/mL against Staphylococcus aureus and E. coli, respectively, which compared favorably with ciprofloxacin (30 and 60 ng/mL, respectively). Compounds 9, 15, 19, and 21 were similar to novobiocin in terms of their activity against E. coli and S. aureus topoisomerase IV, while compound 16 was more potent than novobiocin.  相似文献   

14.
We have previously shown that 870 nm/930 nm wavelengths cause photodamage at physiologic temperatures in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli via generation of endogenous radical oxygen species (ROS) and decreased plasma membrane potentials (ΔΨp). We tested MRSA (Strain HSJ216) in vitro with sublethal 870 nm/930 nm laser energy and subinhibitory concentrations of erythromycin, tetracycline, penicillin, rifampin and trimethoprim to surmise whether photodamage could potentiate these antimicrobials. We also tested patient isolates of fluoroquinolone-resistant MRSA and E. coli with subinhibitory concentrations of ciprofloxacin. In MRSA (Strain HSJ216) we observed 97% potentiation (a 1.5 log10 CFU decrease) with erythromycin and tetracycline. In patient isolates of E. coli, we observed 100% potentiation (>3 log10 CFU decrease) in all irradiated samples with ciprofloxacin. To assess whether staphyloxanthin pigment conferred protection against the generated ROS, we created an isogenic carotenoid-deficient mutant of S. aureus that was significantly less tolerant of 870 nm/930 nm exposure than the wild type strain (P < 0.0001). We suggest that antibiotic potentiation results from a photobiological attenuation of ATP-dependent macromolecular synthetic pathways, similar to that observed with daptomycin, via disruption of ΔΨp and endogenous generation of ROS. With erythromycin, tetracycline and ciprofloxacin, attenuation of energy-dependent efflux systems is also a possibility.  相似文献   

15.
Recently, the production of nanoparticles using biological resources has gained considerable attention due to their application for animal and human well-being. In this study, we used a green synthesis to fabricate gold and silver nanoparticles by reducing HAuCl4 and AgNO3 into AuNPs and AgNPs, respectively, using Dudleya brittonii (DB) extract. The physio-chemical properties of the synthesized nanoparticles were analyzed using a UV–vis spectrophotometer, FESEM, EDX, HR-TEM, AFM and FT-IR. Furthermore, the antimicrobial and cytotoxicity activities of DB-AuNPs and DB-AgNPs against livestock pathogenic bacteria and different cell lines, as well as anti-oxidant activity, were investigated. DB synthesized AuNPs and AgNPs were mostly spherical with a few triangular rods and sizes ranging of 5–25 nm and 10–40 nm, respectively. The in vitro antibacterial and antifungal studies demonstrated the DB-AuNPs and DB-AgNPs have good antibacterial activity against E. coli and other livestock pathogens, including Y. pseudotuberculosis and S. typhi. Cell studies revealed that the higher concentrations of both DB-AuNPs and DB-AgNPs (1 µg/ml to 1 mg/ml) showed potent cytotoxicity in chicken cells after 24 hrs, whereas the middle and lower concentrations of DB-AuNPs and DB-AgNPs did not show cytotoxicity in selected cell lines after 24 hrs. In addition, the DB synthesized AuNPs and AgNPs exhibited good free scavenging activity in a dose-dependent manner. Therefore, the biosynthesized nanoparticles can be utilized by the livestock industry to develop an effective source against livestock microbial infections.  相似文献   

16.
A mixture of chitin-binding lectins from Tomato (Solanum lycopersicum) fruits, designated as Tomato chitin-binding lectins (TCLs), was isolated through affinity chromatography using an acetylated chitin column. Molecular weights of TCLs were determined to be 30 to 115 KDa which possessed mild toxicity with an LC50 value of 521 µg/ml examined by the brine shrimp nauplii toxicity assay. Strong antibacterial activity of TCLs was found against Escherichia coli, Staphylococcus aureus and Shigella boydii at a concentration of 500 µg/ml by using disc diffusion method. Minimum inhibitory concentrations (MIC) of TCLs against Staphylococcus aureus and Escherichia coli were found to be 200 µg/ml and 140 µg/ml, respectively whereas minimum bactericidal concentrations (MBC) against the same bacterial species were 840 and 600 µg/ml, respectively. TCLs also exerted antibiofilm activity (53.32% at 250 μg/ml) against Escherichia coli. Strong antifungal activity of TCLs against Aspergillus niger was found at 600 µg/ml whereas the lectin mixture agglutinated A. niger spores at 200 µg/ml. TCLs exhibited 19.63% and 59.91% anti-proliferative activity against Ehrlich ascites carcinoma (EAC) cells in vivo in Swiss albino mice when intraperitonealy injected at doses 1.0 mg/kg/day and 2.0 mg/kg/day, respectively for five consecutive days. Morphological changes of apoptosis in EAC cells under fluorescence microscope and alteration of the expression of apoptosis-related genes (Fas, Caspase 8 and Caspase 3) had also been observed. MTT assay showed 27.61%, 38.74% and 49.23% of in vitro anticancer activity of the tomato lectins at concentrations of 37.5, 75 and 150 µg/ml, respectively.  相似文献   

17.
Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.  相似文献   

18.
Designing advanced biomaterials with regenerative and drug delivering functionalities remains a challenge in the field of tissue engineering. In this paper we present the design, development, and a use case of an electrospun nano-biocomposite scaffold composed of silk fibroin (SF), hardystonite (HT), and gentamicin (GEN). The fabricated SF nanofiber scaffolds provide mechanical support while HT acts as a bioactive and drug carrier, on which GEN is loaded as an antibacterial agent. Antibacterial zone of inhibition (ZOI) results indicate that the inclusion of 3–6 wt% GEN significantly improves the antibacterial performance of the scaffolds against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria, with an initial burst release of 10–20% and 72–85% total release over 7 days. The release rate of stimulatory silicon ions from SF-HT scaffolds reached 94.53±5 ppm after 7 days. Cell studies using osteoblasts show that the addition of HT significantly improved the cytocompatibility of the scaffolds. Angiogenesis, in vivo biocompatibility, tissue vascularization, and translatability of the scaffolds were studied via subcutaneous implantation in a rodent model over 4-weeks. When implanted subcutaneously, the GEN-loaded scaffold promoted angiogenesis and collagen formation, which suggests that the scaffold may be highly beneficial for further bone tissue engineering applications.  相似文献   

19.
The objective of the present investigation is to fabricate the gold anchor polyaniline (PANI) based nanocomposites which is prepared using itaconic acid (IA) with Fe3O4 by the simple polymerization reaction. The developed multi responsive antibacterial magnetic polymeric composite is represented as Au@PANI–IA–Fe3O4. Further, the chemical structure, thermal and magnetic properties such as FT-IR, TGA/DTA, and VSM analysis are studied. The TEM and SEM/EDX are used to find the shape and composition of gold nanoparticles. The enhanced magnetic properties of ferrite composite are exhibited and the antibacterial properties are determined using E. coli (gram -ve) and S. aureus (gram +ve) bacteria’s. The results of biological properties such as antifungal and antimicrobial are also studied critically conferred. Based on the experimental results, the fabrication method of Au@/PANI/IA/Fe3O4 magnetic nanocomposites, and the relationship between the structure and biological properties are discussed in detail.  相似文献   

20.
The development of organic polymer materials for disinfection and sterilization is thought of as one of the most promising avenues to solve the growth and spread of harmful microorganisms. Here, a series of linear polyisocyanide quaternary ammonium salts (L-PQASs) with different structures and chain lengths were designed and synthesized by polymerization of phenyl isocyanide monomer containing a 4-chloro-1-butyl side chain followed by quaternary amination salinization. The resultant compounds were characterized by 1H NMR and FT-IR. The antibacterial activity of L-PQASs with different structures and chain lengths against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by determining the minimum inhibitory concentrations (MICs). The L-POcQAS-M50 has the strongest antimicrobial activity with MICs of 27 μg/mL against E. coli and 32 μg/mL against S. aureus. When the L-PQASs had the same polymerization degree, the order of the antibacterial activity of the L-PQASs was L-POcQAS-Mn > L-PBuQAS-Mn > L-PBnQAS-Mn > L-PDBQAS-Mn (linear, polyisocyanide quaternary ammonium salt, monomer, n = 50,100). However, when L-PQASs had the same side chain, the antibacterial activity reduced with the increase of the molecular weight of the main chain. These results demonstrated that the antibacterial activity of L-PQASs was dependent on the structure of the main chain and the length of the side chain. In addition, we also found that the L-POcQAS-M50 had a significant killing effect on MK-28 gastric cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号