首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural-based corrosion inhibitors have gained great research interest thanks to their low cost and higher performance. In this work, the chemical composition of the methanolic extract of Ammi visnaga umbels (AVU) was evaluated by gas chromatography (GC) coupled with mass spectrometry (MS) and applied for corrosion inhibition of carbon steel (CS) in 1.0 mol/L HCl using chemical and electrochemical techniques along with scanning electron microscope (SEM) and theoretical calculations. A total of 46 compounds were identified, representing 89.89% of the overall chemical composition of AVU extract, including Edulisin III (72.88%), Binapacryl (4.32%), Khellin (1.97%), and Visnagin (1.65%). Chemical (Weight loss) and electrochemical (potentiodynamic polarization curves (PPC), and electrochemical impedance spectroscopy (EIS)) techniques revealed that investigated extract can be used as an effective corrosion inhibitor for carbon steel in 1.0 mol/L HCl solution. At a low dose of 700 ppm, the inhibitory action of AVU extract reached an inhibition efficiency of 84 percent. According to polarization tests, the investigated extract worked as a mixed inhibitor, protecting cathodic and anodic corrosion reactions. The EIS test showed that upon the addition of AVU extract to HCl solution, the polarization resistance increased while the double layer decreased. SEM images showed a protected CS surface in the inhibited solution. Quantum chemical calculations by Density Functional Theory (DFT) for the main components confirmed the major role of heteroatoms and aromatic rings as adsorption sites. Molecular dynamics (MD) simulation was used to study the adsorption configuration of the main components on the Fe(1 1 0) surface. Outcomes from this study further confirmed the significant advantage of using plant-based corrosion inhibitors for protecting metals and alloys.  相似文献   

2.
Abstract

The present study investigated the adsorption and inhibition behavior of leaf extract of Tephrosia Purpurea (T. purpurea) on mild steel corrosion in 1?N H2SO4 solution using electrochemical and surface morphological methods. Techniques adopted for electrochemical studies were Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) technique; and surface morphological studies were carried out using Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The leaf extract of T. purpurea was characterized using UV-Visible spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance Spectroscopy (NMR) and Gas Chromatography – Mass Spectrometry (GCMS). The results obtained from electrochemical studies exhibited the potential of T. purpurea as good corrosion inhibitor. And, it was found that, the inhibition efficiency (I.E in %) increases with increase in concentration of the inhibitor molecules, the optimum inhibitor concentration observed was 300?ppm and the inhibition efficiency of 93% was observed at this inhibitor concentration. Above 300?ppm, there was not much changes in inhibition efficiency. Polarization studies provided the information that the inhibition is of mixed type and EIS confirmed that the corrosion process is controlled by single charge transfer mechanism. And, it was obtained that, the adsorption of inhibitor molecules obeys Langmuir adsorption isotherm. The inhibition is mainly by the adsorption of inhibitor molecules on the mild steel electrode surface, which was confirmed by FT-IR, SEM and AFM studies. Through all the experimental results, it can be arrived that, the leaf extract of T. purpurea performed as a good corrosion inhibitor for mild steel in 1?N sulfuric acid medium.  相似文献   

3.
This study aimed to examine the extract of barks of Tamarix aphylla as a corrosion inhibitor. The methodology briefly includes plant sample collection, extraction of the corrosion inhibitor, gravimetric analysis, plotting potentiodynamic polarization plots, electrochemical impedance spectroscopic measurements, optimization of conditions, and preparation of the inhibitor products. The results show that the values of inhibition efficiency (IE%) increased as the concentrations of the inhibitor increased, with a maximum achievable inhibition efficiency of 85.0%. Potentiodynamic polarization (PP) tests revealed that the extract acts as a dual-type inhibitor. The results obtained from electrochemical impedance spectroscopy (EIS) measurements indicate an increase in polarisation resistance, confirming the inhibitive capacity of the tested inhibitor. The adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm model and involves competitive physio-sorption and chemisorption mechanisms. The EIS technique was utilized to investigate the effect of temperature on corrosion inhibition within the 298–328 K temperature range. Results confirm that the inhibition efficiency (IE%) of the inhibitor decreased slightly as the temperature increased. Lastly, the thermodynamic parameters for the inhibitor were calculated.  相似文献   

4.
An extract of Mentha rotundifolia leaves (EMRL) was tested as a corrosion inhibitor of steel in 1 M HCl using electrochemical impedance spectroscopy, Tafel polarization methods, and weight loss measurements. The inhibition efficiency of the extract of Mentha rotundifolia leaves was calculated and compared. We note good agreement between these methods. The results obtained revealed that the inhibitor tested differently reduced the kinetics of the corrosion process of steel. Its efficiency increases with the concentration and attained 92.87 % at 35 %. The effect of temperature on the corrosion behavior of steel in 1 M HCl was also studied in the range 298 and 338 K. The thermodynamic data of activation were determined. Mentha rotundifolia extract is adsorbed on the steel surface according to a Langmuir adsorption model.  相似文献   

5.
Three new bipyrazole derivatives, ethyl 5,5′-dimethyl-1′H-1,3′-bipyrazole-4-carboxylate (Bip1), 1,1′,5,5′-tetramethyl-1H,1′H-3,3′-bipyrazole (Bip2), and 3-(bromomethyl)-5,5′-dimethyl-1′H-1,3′-bipyrazole (Bip3), have been synthesized and used as additives to protect C38 steel from corrosion in aerated 1 M HCl solution, using the various corrosion monitoring techniques such as weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy. All the techniques used for the studies show an increase in inhibition efficiency and decrease in the corrosion rate by increasing the inhibitor concentration. Impedance measurements showed that the double layer capacitance decreased and charge transfer resistance increased with increase in the inhibitors concentration, and hence an increase in inhibition efficiency. A potentiodynamic polarization study showed that all the inhibitors act as mixed-type. The adsorption of bipyrazole derivatives is found to obey the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and are discussed.  相似文献   

6.
The corrosion inhibition of mild steel in 0.5 M H2SO4 solution by the extract of litchi peel (Litchi chinensis) was studied by weight loss method, potentiodynamics polarization and electrochemical impedance spectroscopy (EIS). The results show that the litchi peels extract acts as mixed-type inhibitor. The inhibition of corrosion is found to be due to adsorption of the extract on metal surface, which is in conformity with Langmuir’s adsorption isotherm. UV–Vis, Fourier transform infrared (FT-IR) spectroscopy and Scanning electron microscopy (SEM) studies confirm that the inhibition of corrosion of mild steel occurs through adsorption of the inhibitor molecules.  相似文献   

7.
《Comptes Rendus Chimie》2019,22(5):355-362
In this study, the effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid (HCl) solution was investigated by using dodecyl trimethyl ammonium chloride (DTAC), tetradecyl trimethyl ammonium chloride (TTAC), cetyl trimethyl ammonium chloride (CTAC), and octadecyl trimethyl ammonium chloride (OTAC) as corrosion inhibitors to uncover their structure–efficiency relationships. The effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in HCl solution was studied under different conditions, such as corrosion inhibitor concentration, temperature, and acidity, and this was done using the weightlessness method. The results obtained show that these inhibitors have high corrosion inhibition effect on A3 steel, and the corrosion inhibition efficiency is dependent on the length of the alkyl chain. At the same concentration, the longer the alkyl chain, the weaker the corrosion inhibition effect. When the temperature was 50 °C and the concentration of corrosion inhibitor was 70 mg/L, the corrosion inhibition efficiency order of the four cationic surfactants was DTAC > TTAC > CTAC > OTAC. Besides, the experimental results obtained show that the adsorption of the inhibitor on the A3 steel surface conforms to the Langmuir type isotherm, and then the corresponding adsorption thermodynamic parameters were obtained according to these parameters. It was observed that ΔH, ΔS, and Ea increased with increase in the length of the alkyl chain. The adsorption of the inhibitor on the steel surface is an exothermic, spontaneous, entropy process.  相似文献   

8.
《印度化学会志》2021,98(11):100207
The inhibitive action of the aqueous extract of Ruellia tuberosa L (ART) on the corrosion of copper in 0.5 ​M HCl was investigated. The inhibition efficiency increased with the extract concentration, acid concentration, as well as increasing the temperature. The Polarization studies revealed that the ART act as a mixed-type inhibitor. Based on the analysis of electrochemical impedance spectroscopy, an equivalent circuit is suggested. The adsorption of the inhibitor ART on the copper surface obeyed the Langmuir adsorption isotherm. From the results of scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy the adsorption of ART on the copper surface is confirmed.  相似文献   

9.
BackgroundThe environmental and economic benefits have been the driving force in search of efficient corrosion inhibitors for iron/steel used in industrial acidic medium. This study reports on berberine isolated from methanol extract of high-altitude (1347 m) shrub Mahonia nepalensis as a highly efficient and thermally stable corrosion inhibitor for mild steel (MS) in 1.0 M H2SO4 simulating acid pickling condition.MethodsThe weight-loss and electrochemical methods revealed the fast adsorption of berberine.Significant Findings: It achieved above 91% inhibition efficiency (IE) in 0.25 h and reached 94% in 6 h for 1000 ppm berberine. The IE increased with concentration and temperature, giving an IE of 97.2% at 328 K, which makes it a promising candidate for industrial application. It behaved as a mixed type of inhibitor as revealed by open circuit potential and polarization curves. The results indicated suppression of the corrosion by effectively forming an adsorbed berberine layer on the MS surface. Adsorption of the berberine followed a Langmuir adsorption isotherm. The thermodynamic parameters such as activation energy (43.19 kJ/mol), free energy (−35.05 kJ/mol), enthalpy (40.55 kJ/mol), and entropy (−97.83 J/molK) of adsorption supported both physical and chemical interactions of berberine with MS surface. The obtained results also revealed that the adsorption process was endothermic and spontaneous in nature.  相似文献   

10.
以向日葵盘为原料,利用纤维素酶制备果胶(SFP)。采用静态失重、极化曲线和交流阻抗技术研究SFP在1mol/L HCl及0.5mol/L H_2SO_4溶液中对碳钢的缓蚀性能,并探讨其在碳钢表面的吸附机理。结果表明,缓蚀效率随SFP浓度增大而增大,随温度升高而降低。在HCl和H_2SO_4溶液中,SFP的吸附方式分别服从Langmuir和Temkin等温式,属于物理吸附;极化曲线测试显示SFP是一种混合型缓蚀剂。本文的研究表明,向日葵盘果胶是碳钢的绿色高效缓蚀剂,且在HCl溶液中的缓蚀性能优于在H_2SO_4溶液中。  相似文献   

11.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

12.
The efficiency of Laurus nobilis leaves?? extract as a corrosion inhibitor for mild steel in acidic medium (1?M H2SO4) was investigated by use of the electrochemical techniques potentiodynamic polarization, electrochemical impedance spectroscopy, and polarization resistance measurements. According to the experimental results, L. nobilis extract acts as a good corrosion inhibitor. In the presence of the inhibitor, corrosion potential shifted toward a more negative value than for the blank solution. Inhibitor efficiency increased with increasing inhibitor concentration, as expected. According to the potentiodynamic polarization results the corrosion of mild steel increased with increasing temperature both in the presence and absence of the inhibitor. The activation energy (E a) of the corrosion process was calculated from the variation of corrosion current density with temperature.  相似文献   

13.
《印度化学会志》2021,98(9):100128
We reported here, the corrosion inhibition of carbon steel (CS) in H2SO4 media by Ficus carica leaves extract as green sustainable inhibitor. This study was investigated using mass loss method (ML), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM) and electrochemical impedance spectroscopy (EIS). As well as the metal surface morphology was analyzed by Atomic Force Microscopy (AFM). In addition, the chemical characterization of green inhibitor is carried out by Fourier Transform Infrared (FTIR). EIS revealed that the Ficus carica extract formed a thin protective film on the metal surface and by using of 300 ​ppm of extract of Ficus carica allow reaches (92.7%) of corrosion inhibition efficiency (CIE). The PDP curves revealed that the Ficus carica extract act as a mixed-type inhibitor. It was demonstrated that %IE enhanced with rising the Ficus carica extract doses also increased with arises in temperature (95.7%). Kinetic parameters and thermodynamic adsorption of the system have also been measured and studied. The data obtained revealed that the adsorption of Ficus carica on metal surface followed the Temkin isotherm and according to the activation energy (Ea1) the Ficus carica extract acts by chemisorption process. The results from unlike measurements were in a well accord.  相似文献   

14.
The effect of water-soluble corrosion inhibitor on the growth of bacteria and its corrosion inhibition efficiency were investigated. Corrosion inhibition efficiency was studied by rotating cage test and flow loop techniques. The nature of biodegradation of corrosion inhibitor was also analyzed by using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and Gas chromatography and mass spectrometer (GC–MS). The bacterial isolates (Serratia marcescens ACE2, Bacillus cereus ACE4) have the capacity to degrade the aromatic and aliphatic hydrocarbon present in the corrosion inhibitor. The degraded products of corrosion inhibitor and bacterial activity determine the electrochemical behaviour of API 5LX steel. The influence of bacterial activity on degradation of corrosion inhibitor and its influence on corrosion of API 5LX have been evaluated by employing weight loss techniques and electrochemical studies. The main finding of this paper is that the water-soluble corrosion inhibitor is consumed by the microbial action, which contributes to the decrease in inhibitor efficiency. The present study also emphasis the importance of evaluation of water-soluble corrosion inhibitor in stagnant model (flow loop test) and discusses the demerits of the water-soluble corrosion inhibitors in petroleum product pipeline.  相似文献   

15.
The corrosion inhibition properties of horehound (Marrubium vulgare L.) extract (HE) in 1 M hydrochloric acid medium was carried out using electrochemical methods (polarization curve and electrochemical impedance spectroscopy). Experiments were performed by concentration of the inhibitor and temperature effect. The results showed variation in inhibition performance of this plant extract. The Langmuir model was tested to describe the adsorption behavior of the inhibitor on the C38 steel surface. Some thermodynamic functions of dissolution processes were also determined.  相似文献   

16.
Extracts of pomegranate have been investigated, by use of weight loss and potentiodynamic polarization techniques, as green and eco-friendly inhibitors of corrosion of Q235A steel in 1 M hydrochloric acid solution at 60 °C. The efficiency of inhibition by the extracts varied with extract concentration from 10 to 1,000 mg/L; the highest efficiency was 95.0 %. The extracts inhibit corrosion mainly by an adsorption mechanism. In addition, the hydroxyl and ether groups of polyphenols can capture the H+ to reduce the corrosion, and the polyphenols can eliminate dissolved O2 to inhibit oxygen-adsorption corrosion. Potentiodynamic polarization studies show that extracts are mixed-type inhibitors.  相似文献   

17.
The inhibition effect of 2-carboxymethylthio-4-(p-methoxyphenyl)-6-oxo-1,6-dihy-dropyrimidine-5-carbonitrile (CPD) towards the corrosion of copper was studied in aerated stagnant 3.5% NaCl at 25 °C using ac techniques include electrochemical frequency modulation and electrochemical impedance spectroscopy as well as potentiodynamic polarization measurements. Corrosion rates determined using electrochemical frequency modulation (EFM) which measures the non-linear behaviour of a corroding system are compared with corrosion rates obtained from traditional electrochemical techniques and show good agreement. Data obtained from EIS were analyzed to model the corrosion inhibition process through equivalent circuit. Polarization measurements showed that CPD acts as mixed-type inhibitor. The inhibition efficiency increases with an increase in the concentration of CPD. The adsorption of the inhibitor on the copper surface in the sodium chloride solution was found to obey Langmuir’s adsorption isotherm. A mixed inhibition mechanism is proposed for the inhibitive effects of CPD as revealed by potentiodynamic polarization technique.  相似文献   

18.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

19.
Recently, the hydrolysis of Schiff bases under experimental conditions gives suspicion for their corrosion inhibition performance. The current study employs a stable Schiff base namely, 2,2′-{propane-1,3-diylbis[azanylylidene (E) methanylylidene]}bis(6-methoxyphenol) (LPD) as corrosion inhibitor for mild steel (MS) in 1 M HCl solution. The presence of the characteristic peak of the imine group in UV-visible spectra was taken as an indicator for LPD stability in acidic media. The inhibition action was examined using electrochemical techniques including potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) besides gravimetric measurement. The inhibition efficiency reached 95.93 % for 0.75 mM LPD after 24 h of immersion at 25 °C. This high efficiency is owing to the presence of the characteristic imine group and other heteroatoms and π- electrons of the aromatic benzene rings. The mechanism of inhibition depends on adsorption phenomena on mild steel surface which obeys Langmuir isotherm model. The calculated values of adsorption equilibrium constant (Kads), adsorption free energy ΔGads, adsorption enthalpy ΔHads and adsorption entropy ΔSads indicated spontaneous exothermic adsorption process of both physical and chemical nature. By rising temperature, the inhibition efficiency of LPD was decreased. The calculated activation energy was increased as the concentration of LPD increased. LPD was considered as a mixed-type inhibitor as indicated from PDP measurements. The obtained surface morphology and composition analysis using SEM/EDS, AFM and FTIR techniques ensures the high efficiency of LPD as corrosion inhibitor.  相似文献   

20.
Imidazopyridine derivatives, namely 4‐methoxy‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3‐yl)methylene)benzenamine (MMPIPB) and 4‐chloro‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3yl)methylene)benzenamine (CMPIPB), were investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss and electrochemical techniques. According to electrochemical impedance spectroscopy studies, MMPIPB and CMPIPB show corrosion inhibition efficiency of 84.8 and 77.2% at 10‐ppm concentration and 98.1 and 94.8% at 80‐ppm concentration, respectively at 303 K. The corrosion inhibition efficiency of both inhibitors increased with increasing inhibitor concentration and decreased with increasing temperature. The adsorption of both inhibitor molecules on the surface of mild steel obeys Langmuir adsorption isotherm. Polarization studies showed that both studied inhibitors were of mixed type in nature. Electrochemical impedance spectroscopy studies showed that for both inhibitors, the value of charge transfer resistance increased and double‐layer capacitance decreased on increasing the concentration of inhibitors. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy (EDX), and atomic force microscopy were performed for surface study. The density functional theory was employed for theoretical calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号