首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 728 毫秒
1.
Time-resolved and spatially resolved infrared spectra (line images) of self-assembled monolayers of octadecylthiol (ODT) on gold substrates were investigated by planar array infrared (PA-IR) spectroscopy, with a grazing incidence reflection attachment. It was observed that PA-IR spectra with a good signal-to-noise ratio that is comparable to those obtained from Fourier transform infrared spectroscopy could be acquired with a significantly shorter collection time. Focusing on the peak intensities and peak positions of the CH2 asymmetric stretch (approximately 2918 cm(-1)) and the CH3 symmetric stretch (approximately 2960 cm(-1)), respectively, the molecular orientation and organization of the monolayers were determined. The ODT formed a uniform monolayer on the surface of the gold whether it was deposited within 1-2 s or over a 40 h period. Disordered monolayers formed instantly, and with an increase in dipping time, the monolayer became more ordered, becoming highly ordered after dipping times of many ( > 24) hours.  相似文献   

2.
Summary: Planar array infrared spectroscopy (PA-IR) was used for the first time to record transient infrared (TIRS) spectra. In proof-of-concept experiments, it was demonstrated that PA-TIRS can record high quality spectra of common polymeric samples. It was shown the this new technique allows acquiring spectra in as little as 17 ms, opening the door to high speed, real-time monitoring applications.  相似文献   

3.
The structure and deformation behaviour of a new class of thermoplastic elastomers is studied by temperature dependent infrared (IR) spectroscopy and by IR - dichroism spectroscopy. The thermoplastic elastomer is based on polybutadiene with statistically distributed side groups which form an anisotropic supramolecular structure via hydrogen bonds. Changes in the IR spectra at elevated temperatures are related to the melting of the ordered structure. The uniaxial deformation behaviour is studied by linear dichroism Fourier-transform (FT)-IR spectroscopy. A deformation model is developed which accounts for the major experimental results: while the polybutadiene segments behave as flexible chains with characteristic rubberlike elasticity the polar units within the supramolecular structure show an orientation behaviour characteristic for rodlike molecules.  相似文献   

4.
In this study, polycarbonate (PC) and polystyrene (PS) are subjected to plastic deformation by means of cold rolling and the resulting variation of the free volume and its subsequent time evolution after rolling is investigated by means of positron annihilation lifetime spectroscopy (PALS). The value of the long lifetime component that is attributed to the decay of ortho-positronium (tau(o-Ps)) and its intensity (I(o-Ps)) are used to characterize, respectively, the size and the concentration of the free-volume holes. In addition to the PALS experiments, the effect of plastic deformation on the dynamic tensile modulus is investigated. The PALS results show that both for well-aged PC and PS an increase of tau(o-Ps) and a decrease of I(o-Ps) occur upon plastic deformation. During the subsequent aging, tau(o-Ps) tends to return to the value assumed before plastic deformation, while I(o-Ps) remains constant with time. These results corroborate the idea of an amorphous-amorphous transition, rather than that of a "mechanical rejuvenation" as proposed in the past to explain the ability of plastic deformation to reinitiate physical aging. Finally, a linear relation between the size of the free-volume holes and the dynamic tensile modulus is found, which suggests that the stiffness of amorphous glassy polymers is fully determined by their nanoscopic structure.  相似文献   

5.
The orientation of polybutadiene chains in thermoplastic elastomers based on hydrogen bonding complexes is investigated under uniaxial deformation by two-dimensional small-angle neutron scattering (SANS), deuteron magnetic resonance spectroscopy (2H-NMR), optical birefringence and infrared dichroism spectroscopy (FTIR-D). While SANS probes orientation on the length scale of the radius of gyration,2H-NMR, birefringence and FTIR-D monitor orientation on a segmental scale. The deformation of the elastomer chains appears to be affine on the different length scales.  相似文献   

6.
Correlation between morphology and micromechanical deformation behaviour of blends consisting of a lamellae-forming linear styrene/butadiene block copolymer and polystyrene homopolymer (hPS) was studied by different microscopic techniques (transmission electron microscopy and scanning electron microscopy) and rheo-optical Fourier transformed infrared spectroscopy. Attributable to a change in morphology from well-ordered lamellae to a distorted one, a transition in deformation mechanism from homogeneous plastic flow of the lamellae to formation of local craze-like deformation zones was observed on addition of hPS. The latter led to a drastic reduction in elongation at break. An abrupt depression in the degree of orientation of the polystyrene (PS) and the polybutadiene (PB) phases in the blends suggested that the failure occurs at the interface between the added hPS and PS blocks of the block copolymer.  相似文献   

7.
Structural changes and segmental orientation behavior of polyurethane have been studied during uniaxial deformation. The orientation function change of the two (free and hydrogen bonded C?O stretching peaks) peaks during a full cycle of deformation has been observed to be distinctively different. Even though the hydrogen-bonded C? O peaks showed hysteresis behavior, the free C? O peaks exhibited quite elastic behavior. It was thus concluded that the orientation behavior of free and hydrogen-bonded C? O stretching peak represents the deformation characteristics of soft and hard domains, respectively. The orientation behavior at different temperatures also has been studied. Temperature has a significant effect on the orientation behavior of the soft domain, whereas it has negligible effect on the hard domain orientation. It was also demonstrated that the structural change due to the deformation could be analyzed by infrared spectroscopy. Some of the hydrogen-bonded carbonyl groups have been observed to be transferred to the free carbonyl groups, indicating that a small amount of the hard segments in the hard domain have been pulled out into the soft matrix upon deformation. The orientational relaxation also has been studied as a function of time. The segmental relaxation of the hard segments appears to be quite characteristic depending on the nature of the domain in which they reside. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Structural deformations of lipid hybrid bilayer membranes induced by signal peptideless (SPL) proteins have been studied for the first time using the inherently surface specific nonlinear optical technique of sum frequency generation vibrational spectroscopy. Specifically, deformations of 1,2-distearoylphosphatidylglycerol(DSPG) membranes induced by interaction with FGF-1, a SPL protein which is released asa function of cellular stress through a nonclassical pathway, have been investigated. FGF-1 was found to induce lipid alkyl chain deformations in previously highly ordered DSPG membranes at the extremely low concentration of 1 nM at 60 degrees C. The deformation process was shown to exhibit a degree of reversibility upon removal of the protein by rinsing with buffer solution.  相似文献   

9.
A quinoidal thiophene molecule which is a prototype of the repeated unit of s-trans-cis-polyacetylene was studied by sub-5 fs spectroscopy. A breatherlike mode modulation of both the amplitude and frequency of the C[Double Bond]C stretching was observed for the first time. It generates two sidebands of 2238 and 700 cm(-1) with a separation of 769 cm(-1) corresponding to the modulation frequency. The latter mode is very close to the C-S-C ring deformation, which indicate that this mode mediates coupling between the breather mode and the C(beta)-C(beta) stretching mode. It was also found that the breather-type excitation has a longer lifetime (2-3 ps) than in all-trans-polyacetylene (50 fs) due to its confinement.  相似文献   

10.
The preferential growth of single-walled carbon nanotubes (SWNTs) on silica spheres with various diameters was realized for the first time by chemical vapor deposition (CVD) of methane. SWNTs tend to wrap the silica spheres to form a new superstructure of uniform SWNT nanoclaws when the diameters of the silica spheres are larger than 400 nm. The SWNTs obtained on silica spheres have highly graphitic tubular walls as characterized by Raman spectroscopy and HRTEM. This is a new method to obtain tunable uniform elastic deformation of SWNTs, which may act as the model for the study about the effect of delocalized bending on the properties of SWNTs. In addition, the combination of SWNTs with monodispersed silica spheres could conveniently integrate SWNTs into photonic crystals.  相似文献   

11.
Plate impact experiments on the (210), (100), and (111) planes were performed to examine the role of crystalline anisotropy on the shock-induced decomposition of cyclotrimethylenetrinitramine (RDX) crystals. Time-resolved emission spectroscopy was used to probe the decomposition of single crystals shocked to peak stresses ranging between 7 and 20 GPa. Emission produced by decomposition intermediates was analyzed in terms of induction time to emission, emission intensity, and the emission spectra shapes as a function of stress and time. Utilizing these features, we found that the shock-induced decomposition of RDX crystals exhibits considerable anisotropy. Crystals shocked on the (210) and (100) planes were more sensitive to decomposition than crystals shocked on the (111) plane. The possible sources of the observed anisotropy are discussed with regard to the inelastic deformation mechanisms of shocked RDX. Our results suggest that, despite the anisotropy observed for shock initiation, decomposition pathways for all three orientations are similar.  相似文献   

12.
A rheo-optical characterization technique based on near-infrared (NIR) spectroscopy is developed specifically to probe the submolecular-level deformation caused during a mechanical test. An illustrative example of the mechanical deformation of low-density polyethylene (LDPE) is provided to show how it can be utilized. A set of NIR spectra of the polymer sample were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While the substantial level of variation of spectral intensity was readily captured during the mechanical deformation of the LDPE, main feature of the NIR spectra was overwhelmed by the contribution from the baseline change. Projection 2D correlation analysis was then applied to selectively extract the signal contribution from the baseline fluctuation. The 2D correlation spectra revealed the predominant extension of amorphous tie chains followed by the rotation of crystalline lamellae, which induce elastic and plastic deformation of the LDPE, respectively.  相似文献   

13.
The corrosion behaviours of austenitic stainless steels were investigated by electrochemical methods under plastic deformation with constant strain in the naturally aerated 0.5 M H2SO4 + 0.2 M KCl solution at room temperature. The work addresses the influence of plastic deformation and molybdenum element on the corrosion resistance of austenitic stainless steels in the test solution. Electrochemical impedance spectroscopy presents the decreasing charge transfer resistance (Rt) and polarization resistance (Rp) values with the immersion time for AISI 304 stainless steel under constant strain deformation, and the increasing Rt and Rp values with the immersion time for AISI 316 stainless steel. The analysis of the chemical composition of the corrosion products was carried out by XPS. Molybdenum addition in AISI 316 stainless steel affects significantly the corrosion resistance because of its high ability to form Mo (VI) and MoCl5 insoluble compounds in acid medium. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Rheo-optical FTIR spectroscopy was used for the first time to monitor molecular orientation phenomena in highly crosslinked epoxies. After studying the orientation behavior of epoxy/amine networks during uniaxial deformation above their glass transition temperature in a preceding article, this article deals with the rheo-optical characterization of the deformation process of those epoxy systems below Tg. The orientation behavior is influenced by the different molecular structure of the constituents and the free volume entrapped in the resins. Yield strain and tensile modulus are correlated with the slope of the orientation function. The orientation function was found to show an abrupt change of its slope in the yield point region. This phenomenon is discussed with respect to the mechanism of plastic deformation. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Deformation behavior of the segmented block copolymers was studied with synchrotron small-angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR) methods. Polyurethanes used in this work consist of 4,4′-methylene-bis(phenyl isocyanate) and butanediol as a hard segment, and poly(tetramethylene oxide) of various molecular weights as a soft segment. As expected, the deformation of the domain structure that is macroscopically isotropic before the drawing was anisotropic. Depending on the initial orientation of the hard domains, the deformation behavior was observed to be characteristically different. Whereas the hard domains oriented along the deformation direction underwent the extension of the domain separation distance at the low draw ratio, the perpendicular ones showed the shear compression. Further drawing was found to cause the breakup of the hard domains, followed by the formation of fibril structure oriented along the deformation direction. Based on SAXS and FTIR results, a model is proposed to explain the deformation behavior of the various domains and segments of the segmented block copolymers. By quantitatively analyzing the conformation of the soft segment during the deformation process, the model proposed has been consolidated. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3233–3245, 1999  相似文献   

16.
Evolution of molecular conformation in uniaxially deformed isotactic polypropylene (iPP) as a function of temperature is investigated by time‐resolved polarized Fourier‐transform infrared spectroscopy. It is observed that oriented crystals (microfibrils) induced by deformation possess better thermal stability compared with isotropic spherulites. 2D correlation analysis reveals that the relaxation process of ordered helices in deformed iPP could be divided into two regions referring to the melting of different crystalline structures. No obvious sequential change of ordering conformations observed in low temperature region is attributed to melting of defective or destructed crystals. However, notable sequential changes of helices occur in the high temperature region; interestingly, long helices are more thermally stable than short helices. The central region of microfibrils is suggested to consist of a large amount of long helical bundles, and the short ordering segments are primarily located in the outer lateral surfaces. A physical picture of the conformational distribution in deformation‐induced microfibrils is thus gained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 673–684  相似文献   

17.
The mechanical properties of polymeric materials are of considerable importance to their engineering applications. Apart from the chemical structure and the thermal history, molecular orientation has a major influence on the mechanical properties of a polymer. The increased need for more detailed data and a better understanding of the mechanisms involved in polymer deformation has led to the search for new experimental techniques to characterize transient structural changes during mechanical processes. With the advent of rapid-scanning Fourier - transform infrared (FTIR) spectroscopy, simultaneous vibrational spectroscopic and mechanical (so-called rheo-optical) measurements during the deformation of polymers have emerged as a very informative probe for the study of deformation and relaxation phenomena in polymer films in the late seventies and have since then been applied to obtain data on strain-induced crystallization and orientational and conformational changes during mechanical treatment of a wide variety of polymers.  相似文献   

18.
Using the theory of non-elastic deformation based on a specific model for the mobility in amorphous polymers, an equation was obtained including the real and imaginary parts of the complex modulus and the heat capacity as a function of temperature and ageing time. Thus, the model is based on the calculation of time and temperature evolution of the population of “faults” (corresponding to an excess of enthalpy and entropy) in the structure. We employ the model with only one “characteristic” relaxation time obtained from a concept of hierarchical correlation. The parameters appearing in the equations for G* and cp are the same in each case and are obtained from classical experiments (mechanical spectroscopy, dilatometry, calorimetry, etc.), thus having a specific physical meaning. Dynamic loss tangent and specific heat of PMMA measured after different thermal histories involving isothermal ageing agrees quite well with the prediction of the model.  相似文献   

19.
The deformation of isotropic isotactic polypropylene with a spherulitic initial structure has been studied. Fourier transform IR spectra of polypropylene deformed to various stretch ratios in air and in a physically active medium have been recorded. From the spectroscopy data, the dichroic ratios and orientation functions have been calculated for the amorphous and crystalline polypropylene phases. It turned out that the orientations of macromolecules in the amorphous and crystalline polypropylene phases change identically while stretching in a physically active (water–ethanol) medium. However, the deformation in air leads to a more pronounced orientation of macromolecules in the crystalline phase as compared with the orientation in the amorphous phase. The maximum values of the orientation function in the deformation in air coincide with the stretch ratio at the yield point. This is how a physically active medium acts in crazing in comparison with shear deformation in air.  相似文献   

20.
The modification of kaolinite surfaces through mechanochemical treatment has been studied using a combination of mid-IR and near-IR spectroscopy. Kaolinite hydroxyls were lost after 10 h of grinding as evidenced by the decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm(-1) and the deformation modes at 937 and 915 cm(-1). Concomitantly an increase in the hydroxyl-stretching vibrations of water is observed. The mechanochemical activation (dry grinding) causes destruction in the crystal structure of kaolinite by the rupture of the O-H, Al-OH, Al-O-Si and Si-O bonds. Evidence of this destruction may be followed using near-IR spectroscopy. Two intense bands are observed in the spectral region of the first overtone of the hydroxyl-stretching vibration at 7065 and 7163 cm(-1). These two bands decrease in intensity with mechanochemical treatment and two new bands are observed at 6842 and 6978 cm(-1) assigned to the first overtone of the hydroxyl-stretching band of water. Concomitantly the water combination bands observed at 5238 and 5161 cm(-1) increase in intensity with mechanochemical treatment. The destruction of the kaolinite surface may be also followed by the loss of intensity of the two hydroxyl combination bands at 4526 and 4623 cm(-1). Infrared spectroscopy shows that the kaolinite surface has been modified by the removal of the kaolinite hydroxyls and their replacement with water adsorbed on the kaolinite surface. NIR spectroscopy enables the determination of the optimum time for grinding of the kaolinite. Further NIR allows the possibility of continual on-line analysis of the mechanochemical treatment of kaolinite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号