首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A cohesive zone element technique (CZ) is applied to study grain boundary fracture in nano coating layers (see [1]). This goes along with the investigations of the delamination and fracture behavior of the coatings and the substrate interface. The main motivation is to investigate antiadhesive and wear resistant properties of coatings made of ceramics produced by the High Power Pulsed Magnetron Sputtering (HPPMS) technique [2]. Different physical conditions in HPPMS result into different grain morphologies with different mechanical properties. Therefore prediction of fracture and damage in such systems can lead to the optimum choice of process parameters in order to gain the best fracture resistance properties for the coatings. To illustrate the applicability of the model, several simulations with different mechanical and structural properties are performed. The developed CZ element model is capable of modeling the separation, the contact and also the irreversible reloading conditions in different directions [3]. The model is further developed to be applicable for geometrically complex interfaces including different bonding behaviors, with a high robustness. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The proper modeling of state-of-the-art engineering materials requires a profound understanding of the nonlinear macroscopic material behavior. Especially for heterogeneous materials the effective macroscopic response is amongst others driven by damage effects and the inelastic material behavior of the individual constituents [1]. Since the macroscopic length scale of such materials is significantly larger than the fine-scale structure, a direct modeling of the local structure in a component model is not convenient. Multiscale techniques can be used to predict the effective material behavior. To this end, the authors developed a modeling technique based on representative volume elements (RVE) to predict the effective material behavior on different length scales. The extended finite element method (XFEM) is used to model discontinuities within the material structure independent of the underlying FE mesh. A dual enrichment strategy allows for the combined modeling of kinks (material interfaces) and jumps (cracks) within the displacement field [2]. The gradual degradation of the interface is thereby controlled by a cohesive zone model. In addition to interface failure, a non-local strain driven continuum damage model has been formulated to efficiently detect localization zones within the material phases. An integral formulation introduces a characteristic length scale and assures the convergence of the approach upon mesh refinement [3]. The proposed method allows for an efficient modeling of substantial failure mechanisms within a heterogeneous structure without the need of remeshing or element substitution. Due to the generality of the approach it can be used on different length scales. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A transient finite element thermal model is formulated valid for surface coatings on any substrate material and based on the continuum conduction equations with solar loading as a heat source. The model allows cooling to be applied at outer surfaces of the body, by natural convection and accounts for ambient radiative heat loss. Hemispherical spectral reflectivities are obtained for various polymer-based coatings on a steel substrate using spectrophotometers in the 0.1 μm to 25 μm wavelengths. A time-dependent solar irradiation energy source (blackbody equivalent) is applied to an object with spectrally diffuse outer surfaces, and the incoming heat flux is split by a band approximation into reflected and absorbed energy and finally integrated over the complete spectrum to provide thermal source terms for the finite element model.  相似文献   

4.
Hard material coatings are widely employed as wear protection for highly engrossed surfaces. For example, coatings consisting of tungsten carbide (WC) and cobalt (Co) are used for sheet metal forming tools. A relatively cost-efficient coating technique is the high velocity oxygen fuel (HVOF) thermal spraying process which, as a trade-off, induces a large amount of energy into the heterogeneous coating and the substrate. Hence, this leads to a complex transient, thermomechanically coupled problem. In order to predict the residual stresses during the quenching procedure, a two scale finite element framework is established wherein the scale bridging is performed by application of two different homogenisation approaches. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The process integrated powder coating by radial axial rolling of rings represents a new hybrid production technique in order to apply the functional layers on ring-shaped work pieces. Since the layer is produced in a powder metallurgical way [1], the ring volume decreases during the compaction of the layer material. In conventional ring rolling processes an isochoric plastic deformation of the ring is exploited in order to control the process. However this is not true any more for a ring exhibiting a compressible layer [2]. Consequently different control mechanisms have to be developed for the new considered process. One major aspect is the stability of the process which is governed by a stable position of the ring as well as the roundness of the ring. Therefore the finite element (FE) model has been coupled with a PID-controller unit and it will be shown that a stable process can be reached in this way. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An extended crystal plasticity model is applied to crystalline sub-micron gold in order to study the mechanical response. Numerical results for different crystal sizes are presented and discussed. The governing equations are discretized and, subsequently, solved via a dual-mixed finite element formulation [1, 2]. The evolution equation of the dislocation density is taken as a global field relation additionally to the balance of linear momentum, whereas the flow rule is solved locally at the Gauß point level [3,4]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The objective of topology optimization is to find a mechanical structure with maximum stiffness and minimal amount of used material for given boundary conditions [2]. There are different approaches. Either the structure mass is held constant and the structure stiffness is increased or the amount of used material is constantly reduced while specific conditions are fulfilled. In contrast, we focus on the growth of a optimal structure from a void model space and solve this problem by introducing a variational problem considering the spatial distribution of structure mass (or density field) as variable [3]. By minimizing the Gibbs free energy according to Hamilton's principle in dynamics for dissipative processes, we are able to find an evolution equation for the internal variable describing the density field. Hence, our approach belongs to the growth strategies used for topology optimization. We introduce a Lagrange multiplier to control the total mass within the model space [1]. Thus, the numerical solution can be provided in a single finite element environment as known from material modeling. A regularization with a discontinuous Galerkin approach for the density field enables us to suppress the well-known checkerboarding phenomena while evaluating the evolution equation within each finite element separately [4]. Therefore, the density field is no additional field unknown but a Gauß-point quantity and the calculation effort is strongly reduced. Finally, we present solutions of optimized structures for different boundary problems. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In the present study, a computational approach for the numerical simulation of ductile fracture within the framework of the finite element method is proposed. In the developed macroscopic formulation, the inelastic behavior in the bulk of the material is described by the finite elasto‐plastic material model proposed in [4]. The failure process is modeled by introducing discontinuities when a special local fracture criterion is satisfied. The discontinuities are incorporated via special triangular finite elements with embedded interfaces following the line of [2]. Finally, the numerical procedure is evaluated for a twodimensional representative test problem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
O. Schilling  S. Reese 《PAMM》2005,5(1):445-446
Task is the simulation of forming processes using particle methods. We implemented some mesh-free methods (the element free Galerkin method [1] and others) and the finite element method in one programme system which permits a direct comparison. For the mesh-free methods a moving least squares approximation is applied. The shape functions are not zero or one at the nodes, thus essential boundary conditions cannot be imposed directly [2]. We use a penalty method to enforce essential boundary conditions and contact conditions. The contact algorithm (normal contact of nodes to C1-continuous surfaces) is checked by means of the element free Galerkin method and the FEM on the basis of numerical examples which deal with forming processes. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The purpose of this work is to analyze size effects in the deformation occurring during nanoindentation-tests of thin metallic films on ceramic substrates. It is well known that classical phenomenological theories of plasticity are hardly applicable in cases of very small dimensions of a body [1]. Thus, the dependency of the mechanical behavior of thin films on the thickness can not be studied in the framework of classical theories. In order to simulate numerically the deformation, a specific material model has been chosen which is able to account for size effects. It bases on the theory of ”Mechanism Strain Gradient” (MSG) plasticity [2] in conjunction with the deformation theory of plasticity. The material model has been implemented via the user defined element subroutine (UEL) in the commercial FE code ABAQUS/Standard as a ten-node tetrahedron-element. With the developed subroutine the deformation of thin copper films on Si substrates during nanoindentation-tests has been simulated. Different material models of the indentor (rigid and elastic) as well as different friction conditions between the film and the pyramidal indentor were tested. Furthermore, the influence of an additional oxide layer on the films surface has been analysed. In order to verify the numerical investigations, results from nanoindentation experiments have been used for comparison [4]. The FE simulations for different thicknesses in the range of 100-600nm showed a very good agreement with the experiments. In particular, the size dependency of the force-displacement curves, calculated by using the developed subroutine, is in rather good agreement with experiments. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
13.
The concept of adaptive error control for finite element Galerkin discretizations has more recently been extended from the pure treatment of the discretization errors [1], [2] also to the control of modelling errors [4], [5]. These techniques can be employed for a rigorous justification of the local choice of the model out of a given hierarchy with increasing complexity. In the present paper the concept is exemplified by a hierarchy of linear-elastic models, consisting of a basic model with constant E modulus and an improved model with oscillating E modulus. Significant reduction of the computational complexity can be achieved by a proper choice of the model in different subdomains, automatically chosen by the error estimators. Several error indicators are investigated in the context of goal oriented error estimation. Their efficiency is compared by means of finite element simulations [3] of an elementary example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Florian Beyer  Kai Willner 《PAMM》2014,14(1):239-240
Sheet and bulk metal forming are widely used manufacturing methods. The interaction between worktool and workpiece in such a process causes friction which has a remarkable impact on the expended energy of the process. Therefore the influence of friction is important. Friction can be split into shearing and ploughing [1]. Ploughing is the plastic deformation of a soft surface by a hard contact partner. Shear forces are only transferred in the real contact area where material contact occurs. The investigation of the contribution of both ploughing and shearing to the total friction resistance is done with the use of an elasto-plastic halfspace model. The multiscale character of surfaces demands a fine discretization, which results in numerical effort. While a finite element method takes into account both surface and bulk of the contact partners, the halfspace model only regards the contact surfaces and thereby consumes less computing capacity. In order to identify the friction resistance, two rough surfaces get into contact. After full application of the normal load, the surfaces are moved relatively to each other. New asperities of the contact surfaces get into contact and are plastically deformed. These deformations are used to estimate the ploughing effect in dependency on the relative displacement. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The present work deals with the design of structure-preserving numerical methods in the field of nonlinear elastodynamics and structural dynamics. Structure-preserving schemes such as energy-momentum consistent (EMC) methods are known to exhibit superior numerical stability and robustness. Most of the previously developed schemes are relying on a displacement-based variational formulation of the underlying mechanical model. In contrast to that we present a mixed variational framework for the systematic design of EMC schemes. The newly proposed mixed approach accomodates high-performance mixed finite elements such as the shell element due to Wagner & Gruttmann [1] and the brick element due to Kasper & Taylor [2]. Accordingly, the proposed approach makes possible the structure-preserving extension to the dynamic regime of those high-performance elements. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Lotfi Abdelhakim 《PAMM》2004,4(1):348-349
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method [2, 3]. The global problem is transformed to a independant local problems posed in each bodie and a problem posed on the contact surface (the interface problem). The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure [8]. Our preconditioner construction is based on the application of the H‐matrix technique [6, 7] together with the representation of the H1/2 seminorm by a sum of partial seminorms [4]. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Metallic materials often exhibit a complex microstructure with varying material properties in the different phases. Of major importance in mechanical engineering is the evolution of the austenitic and martensitic phases in steel. The martensitic transformation can be induced by heat treatment or by plastic surface deformation at low temperatures. A two dimensional elastic phase field model for martensitic transformations considering several martensitic orientation variants to simulate the phase change at the surface is introduced in [1]. However here, only one martensitic orientation variant is considered for the sake of simplicity. The separation potential is temperature dependent. Therefore, the coefficients of the Landau polynomial are identified by results of molecular dynamics (MD) simulations for pure iron [1]. The resulting separation potential is applied to analyse the mean interface velocity with respect to temperature and load. The interface velocity is computed by use of the dissipative part to the configurational forces balance as suggested in [3]. The model is implemented in the finite element code FEAP using standard 4-node elements with bi-linear shape functions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
In this contribution an approach for the fiber reorientation in three-dimensional arterial walls is presented. In detail the load-bearing capacity of the tissue is increased by re orienting the fibers with respect to the principal stresses, cf. [1]. The improved fiber reorientation algorithm is combined with the polyconvex nonlinear anisotropic material model presented in [3]. The results of a three-dimensional finite element simulation, where the reorientation approach is applied to a short segment of a patient-specific arterial geometry, are presented. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号