首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A dynamic surface tension detector (DSTD) was used to examine the molecular diffusion and surface adsorption characteristics of surface-active analytes as a function of solution viscosity. Dynamic surface tension is determined by measuring the differential pressure across the air/liquid interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth is achieved for each eluting drop (at a rate of 30 drops/min for 2 μl drops), providing insight into the kinetic behavior of molecular diffusion and orientation processes at the air/liquid interface. Three-dimensional data are obtained through a calibration procedure previously developed, but extended herein for viscous solutions, with surface tension first converted to surface pressure, which is plotted as a function of elution time axis versus drop time axis. Thus, an analyte that lowers the surface tension results in an increase in surface pressure. The calibration procedure derived for the pressure-based DSTD was successfully extended and implemented in this report to experimentally determine standard surface pressures in solutions of varied viscosity. Analysis of analytes in viscous solution was performed at low analyte concentration, where the observed analyte surface activity indicates that the surface concentration is at or near equilibrium when in a water mobile phase (viscosity of 1.0 Cp). Two surface-active analytes, sodium dodecyl sulfate (SDS) and polyethylene glycol (MW 1470 g/mol, PEG 1470), were analyzed in solutions ranging from 0 to 60% (v/v) glycerol in water, corresponding to a viscosity range of 1.0-15.0 Cp. Finally, the diffusion-limited surface activity of SDS and PEG 1470 were observed in viscous solution, whereby an increase in viscosity resulted in a decreased surface pressure early in drop growth. The dynamic surface pressure results reported for SDS and PEG 1470 are found to correlate with solution viscosity and analyte diffusion coefficient via the Stokes-Einstein equation.  相似文献   

2.
Miller KE  Skogerboe KJ  Synovec RE 《Talanta》1999,50(5):1045-1056
First, a novel technique for calibration of a dynamic surface tension detector (DSTD) is described. The DSTD measures the differential pressure as a function of time across the liquid-air interface of growing drops that repeatedly form and detach at the end of a capillary tip. The calibration technique utilizes the ratio of pressure signals acquired from the drop growth of two separate solutions, i.e. a standard solution and a corresponding mobile phase, such as water, both of which have a known surface tension. Once calibrated, the dynamic surface tension of an analyte is obtained from the ratio of the pressure signals from the analyte solution to that of the mobile phase solution. Thus, this calibration technique eliminates the need to optically image the radius of the expanding drop of liquid. Accurate dynamic surface tension determinations were achieved for aqueous sodium dodecyl sulfate (SDS) solutions over a concentration range of 0.5-5.4 mM. The measured surface tensions for these SDS solutions range from 70.3 to 46.8 dyne/cm and were in excellent agreement with the literature. A precision of 0.2 dyne/cm (1 S.D.) was routinely obtained. Second, the DSTD with this calibration technique was combined with flow injection analysis (FIA) for the study of model protein solutions and polymer solutions. The kinetic surface tension behavior of aqueous bovine serum albumin (BSA) solutions as a function of concentration and flow rate is presented. Evaluation of the dynamic surface tension data illustrates that a protein such as BSA initially exhibits kinetically-hindered surface tension lowering, i.e. a time dependence, as BSA interacts with the liquid-air interface of an expanding drop. FIA/DSTD is then shown to be an effective tool for the rapid study of kinetically-hindered surfactant mixtures. It was found that mixtures of SDS and the polymeric surfactant Brij(R)-35 (lauryl polyoxyethylene ether with an average molecular weight of 1200 g/mol) result in essentially an additive lowering of the surface tension. Mixtures of polyethylene glycol (PEG), with an average molecular weight of 1470 g/mol, and Brij(R)-35, however, result in a competitive (non-additive) surface tension with the Brij(R)-35 dominating the response.  相似文献   

3.
Young TE  Synovec RE 《Talanta》1996,43(6):889-899
Chemical analysis of surface active species (surfactants) is of interest for many applications, such as in process monitoring, biomedical applications, environmental monitoring and surface science investigations. Recently, we reported a dynamic surface tension detector (DSTD) based upon optically probing the size of a repeating drop resulting from constant flow of an aqueous solvent out of the end of a capillary. Presence of a surfactant in a growing drop reduces the surface tension at the air-solvent interface, causing the drop to detach at a smaller volume, which is detected. The DSTD has a kinetic dependence, and with increasing flow rate the sensitivity decreases due to diffusional and adsorption effects. We report that for the sodium salt of dodecylsulfate (DS), the DSTD performs significantly better with a stainless steel (S.S.) capillary dropper than with a fused silica dropper because the S.S. dropper exhibits a smaller adsorption effect as a function of time. Flow-injection analysis with the DSTD of DS was found to enhance sensitivity 50-fold by in-situ reaction with the ion-pair reagent tetrabutylammonium hydroxide (TBA) in water, even though the TBA alone was not very surface active. The TBA-DS system serves as a model for a selective detection method in which surface activity is exploited and enhanced. The detection limit for DS, as TBA-DS, was 400 ppb. Additionally, weakly surface active species such as TBA could be analyzed "indirectly" by ion-pair formation with DS. The enhanced sensitivity is due to increased packing of the ion-pairs at the air-aqueous solvent interface. The flow rate dependence on the sensitivity of detecting the TBA-DS ion-pair was examined. Two limiting conditions were observed as a function of ion-pair concentration: sensitivity decreases linearly with inverse flow rate at high flow rates and approaches a steady state at slower flow rates.  相似文献   

4.
First, a novel calibration method is used to expand the current understanding of spherical drop growth and elongation that occurs during on-line measurements of surface pressure using the dynamic surface tension detector (DSTD). Using a novel surface tension calibration method, the drop radius is calculated as a function of time from experimental drop pressure data and compared to the theoretical drop radius calculated from volumetric flow rate. From this comparison, the drop volume at which the drop shape starts to deviate ( approximately 4 mul) from a spherical shape is readily observed and deviates more significantly by approximately 6 mul drop volume (5% deviation in the ideal spherical drop radius) for the capillary sensing tip employed in the DSTD. From this assessment of drop shape, an experimental method for precise drop detachment referred to as pneumatic drop detachment is employed at a drop volume of 2 mul (two second drops at 60 mul/min) in order to provide rapid dynamic surface tension measurements via the novel on-line calibration methodology. Second, the DSTD is used to observe and study kinetic information for surface-active molecules and association complexes adsorbing to an air-liquid drop interface. Dynamic surface tension measurements are made for sodium dodecyl sulfate (SDS) in the absence and presence of either tetra butyl ammonium (TBA) or chromium (III). Sensitive, indirect detection of chromium and other multiply charged metals at low concentrations is also investigated. The DSTD is utilized in examining the dynamic nature of SDS: cation association at the air-liquid interface of a growing drop. Either TBA or Cr(III) were found to substantially enhance the surface tension lowering of dodecyl sulfate (DS), but the surface tension lowering is accompanied by a considerable kinetic dependence. Essentially, the surface tension lowering of these DS: cation complexes is found to be a fairly slow process in the context of the two second DSTD measurement. The limit of detection for both SDS and chromium (III) is in the 300-400 part-per-billion (by mass) range.  相似文献   

5.
Simple sequential injection analysis systems with DSTD (SIA/DSTD) have been developed. One was employed for the study of the effects of the ion contents in solutions to the dynamic surface pressure of ionic surfactants. The results from the studies show the possibility for an alternative simple fast screening, but also a sensitive procedure for water quality determination. Another simple SIA/DSTD system has been demonstrated for the quantification of an anionic surfactant using a single standard calibration.  相似文献   

6.
Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e., n-hexane) that repeatedly grow in water at the end of a capillary tip. Using a calibration technique based on the Young-Laplace equation, the differential pressure signal is converted, in real-time, to a relative interfacial pressure. This allows the DIPD to monitor the interfacial tension of surface active species at liquid-liquid interfaces in flow-based analytical techniques, such as flow injection analysis (FIA), sequential injection analysis (SIA) and high performance liquid chromatography (HPLC). The DIPD is similar in principle to the dynamic surface tension detector (DSTD), which monitors the surface tension at the air-liquid interface. In this report, the interfacial pressure at the hexane-water interface was monitored as analytes in the hexane phase diffused to and arranged at the hexane-water interface. The DIPD was combined with FIA to analytically measure the interfacial properties of cholesterol and Brij®30 at the hexane-water interface. Results show that both cholesterol and Brij®30 exhibit a dynamic interfacial pressure signal during hexane drop growth. A calibration curve demonstrates that the relative interfacial pressure of cholesterol in hexane increases as the cholesterol concentration increases from 100 to 10,000 μg ml−1. An example of the utility of the DIPD as a selective detector for a chromatographic separation of interface-active species is also presented in the analysis of cholesterol in egg yolk by normal-phase HPLC-DIPD.  相似文献   

7.
Multidimensional analysis of denatured milk proteins is reported using high-performance liquid chromatography (HPLC) combined with dynamic surface tension detection (DSTD). A hydrophobic interaction chromatography (HIC) column (a TSK-Gel Phenyl-5PW column, TosoBiosep), in the presence of 3.0 M guanidine hydrochloride (GdmHCl) as denaturing agent is employed as the mobile phase. Dynamic surface tension is measured through the differential pressure across the liquid-air interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth (50 ms to 4 s) is achieved, for each eluting drop of 4 s length, providing insight into both the kinetic and thermodynamic behavior of molecular orientation processes at the liquid-air interface. An automated calibration procedure and data analysis method is applied with the DSTD system, which allows two unique solvents to be used, the HIC mobile phase for the sample and a second solvent (water for example) for the standard, permitting real-time dynamic surface tension data to be obtained. Three-dimensional data is obtained, with surface tension as a function of drop time first converted to surface pressure, which is plotted as a function of the chromatographic elution time axis. Experiments were initially performed using flow injection analysis (FIA) with the DSTD system for investigating commercial single standard milk proteins (alpha-lactalbumin, beta-lactoglobulin, alpha-, beta-, kappa-casein and a casein mixture) denatured by GdmHCl. These FIA-DSTD experiments allowed the separation and detection conditions to be optimized for the HIC-DSTD experiments. Thus, the HIC-DSTD system has been optimized and successfully applied to the selective analysis of surface-active casein fractions (alpha s1- and beta-casein) in a commercial casein mixture, raw milk samples (cow's, ewe's and goat's milk) and other diary products (yogurt, stracchino, mozzarella, parmesan cheese and chocolate cream). The different samples were readily distinguished based upon the selectivity provided by the HIC-DSTD method. The selectivity advantage of using DSTD relative to absorbance detection is also demonstrated.  相似文献   

8.
A drop-based dynamic surface-tension detector (DSTD) has been used to study the dynamic surface tension behavior of proteins denatured in guanidine thiocyanate (GndSCN). The dynamic surface tension at the air–liquid interface is obtained by measuring the internal pressure of drops that grow and detach at a specified rate. In the method the sample of interest is injected and subsequently flows to the DSTD-sensing capillary tip. For this work, a novel DSTD calibration procedure utilizing two distinct mobile phases is applied. Here, the mobile phases are aqueous with different constituents, for example GndSCN and phosphate buffer, either added or omitted. The dual-mobile phase calibration procedure gives the analyst the capability of making protein measurements in a GndSCN–phosphate buffer mobile phase, while measuring a calibration standard in another mobile phase, such as water, in which the surface tension of the calibration standard is readily available. Results are presented with drop volumes of either 2 L (i.e. 2-s drops) or 7 L (i.e. 7-s drops) for proteins varying in molar mass from 12,000 to 330,000 g mol–1. We demonstrate that the DSTD can be used to determine the molar mass of proteins denatured in GndSCN. The method applies a regime where the denatured protein is detected by surface-active properties, and selectivity with regard to molar mass is contained in the dynamic component of the DSTD signal. The dynamic surface pressure signals of the denatured proteins suggest that diffusion plays a large role in the kinetics of the surface activity. The limit of detection for the denatured proteins studied ranged from 3 mg L–1 to 14 mg L–1. The DSTD, coupled with the novel dual-mobile phase calibration procedure, can be used to investigate the fundamental properties of proteins. Insight into the behavior at the air–liquid interface for native and denatured proteins is achieved; this is a novel tool for studying protein denaturation, complementary to other common approaches such as spectroscopy and calorimetry. Furthermore, the reported method could be widely applied to the study of effects on the interfacial properties of proteins after a variety of chemical and physical modifications that are possible with the dual-mobile phase calibration procedure.  相似文献   

9.
Multidimensional analysis of instant coffee and barley beverage samples using size exclusion chromatography (SEC) combined with a dynamic surface tension detector (DSTD) and a UV-vis absorbance detector (UV) is reported. A unique finding of this study was the action of the tetrabutylammonium (TBA) cation as a modifying agent (with bromide as the counter anion) that substantially increased the surface pressure signal and sensitivity of many of the proteins in the chromatographically separated samples. The tetrabutylammonium bromide (TBAB) enhancement of the surface pressure signal was further investigated by studying the response of 12 commercial standard proteins (α-lactalbumin, β-lactoglobulin, human serum albumin (HSA), albumin from chicken egg white (OVA), bovine serum albumin (BSA), hemoglobin, α-chymotrypsinogen A, cytochrome C, myoglobin, RNase A, carbonic anhydrase, and lysozyme) in buffer performed using flow injection analysis (FIA) coupled with the DSTD with and without various concentrations of TBAB. The FIA-DSTD data show that 1 mM TBAB enhances sensitivity of HSA detection, by lowering the limit of detection (LOD) from 2 mg/mL to 0.1 mg/mL. Similarly, the LOD for BSA was reduced from 1 mg/mL to 0.2 mg/mL. These FIA-DSTD experiments allowed the detection conditions to be optimized for further SEC-UV/DSTD experiments. Thus, the SEC-UV/DSTD system has been optimized and successfully applied to the selective analysis of surface-active protein fractions in a commercial instant coffee sample and in a soluble barley sample. The complementary selectivity of using the DSTD relative to an absorbance detector is also demonstrated.  相似文献   

10.
Maskula S  Nyman J  Ivaska A 《Talanta》2000,52(1):91-99
A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol.  相似文献   

11.
The on-line coupling of sequential injection analysis (SIA) and capillary electrophoresis (CE) via an in-line injection valve is presented. The SIA system is used for automated derivatization of amino acids and peptides. Dichlorotriazinylaminofluorescein serves as the derivatization agent, thus enabling sensitive laser-induced fluorescence detection of the derivatized analytes. The SIA procedure includes the following steps: (a) introduction of reagent and sample zones in a holding coil, (b) sample and reagent mixing in a reaction coil, (c) stop-flow step for increase of the reaction time, and (d) delivery of derivatized sample into the loop of the micro-valve interface. A small portion of the analyte zone is introduced electrokinetically in the separation capillary via the valve interface and CE analysis is performed. Factors affecting the CE separation, such as pH, the borate and sodium dodecyl sulphate concentration of the background electrolyte have been optimized. The derivatization conditions have been studied to obtain a high reaction yield in a relative short time. The transfer of a part of the reaction plug into the loop of the valve interface has been optimized. Using des-Tyr(1)-[Met]-enkephalinamide as test compound, it is demonstrated that after automated derivatization, on-line electrophoretic analysis could be achieved. Glycine has been selected as the internal standard in order to correct for variations in reaction time and filling of the injection loop. For the enkephalin, good reproducibility (RSD<4.5% calculated by the ratio of the peak areas) and linearity (0.5-5 microg mL(-1), R(2)>or=0.994) are obtained with a detection limit of 30 ng mL(-1) (S/N=3).  相似文献   

12.
A sequential injection analysis (SIA) system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves was developed. A novel SIA operation mode using multiphase laminar flow effect and pneumatic microvalve control was proposed. The sample and reagent solutions were synchronously loaded and injected in the chip-based sample injection module instead of multi-step sequential injection by a multiposition valve and a reciprocating pump as in conventional SIA system. The sample and reagent injection volumes were reduced to ca. 1.1 nL. The present system has the advantages of simple structure, fast and convenient operation, low sample and reagent consumption, and high degree of integration and automation. The system operation conditions were optimized using fluorescein as model sample. Its feasibility in biological analysis was preliminarily demonstrated in enzyme inhibition assay.  相似文献   

13.
Bramanti E  Ferrari C  Angeli V  Onor M  Synovec RE 《Talanta》2011,85(5):2553-2561
A dynamic surface tension detector (DSTD) has been equipped with an additional pressure sensor for simultaneous viscosity measurements, as a detector for flow injection analysis. The viscosity measurement is based on a single capillary viscometer (SCV) placed in parallel configuration with the DSTD. The viscometer in the optimized conditions consists of a PEEK capillary (i.d. = 0.25 mm, L = 75 cm) kept at constant temperature using a thermostatic bath, which leads on the two sides to the two arms of a differential piezoelectric pressure transducer with a range of 0-35 psi. The DSTD, described previously, measures the changing pressure across the liquid/air interface of 2 μL drops repeatedly forming at the end of a capillary.SCV performance has been evaluated by measuring dynamic viscosity of water/glycerol mixtures analysed in flow injection and comparing the results with the values reported in the literature. The detection limits of SCV and DSTD, calculated as 3σ of the blank, were 0.012 cP and 0.6 dyn cm−1, respectively.The FI-SCV-DSTD system has been applied to the study of temperature-induced denaturation/aggregation process in bovine serum albumin (BSA).The results have been supported and discussed with respect to BSA conformational analysis performed using Fourier Transform infrared spectroscopy.  相似文献   

14.
The wetting and spreading of nanofluids composed of liquid suspensions of nanoparticles have significant technological applications. Recent studies have revealed that, compared to the spreading of base liquids without nanoparticles, the spreading of wetting nanofluids on solid surfaces is enhanced by the structural disjoining pressure. Here, we present our experimental observations and the results of the statics analysis based on the augmented Laplace equation (which takes into account the contribution of the structural disjoining pressure) on the effects of the nanoparticle concentration, nanoparticle size, contact angle, and drop size (i.e., the capillary and hydrostatic pressure); we examined the effects on the displacement of the drop-meniscus profile and spontaneous spreading of a nanofluid as a film on a solid surface. Our analyses indicate that a suitable combination of the nanoparticle concentration, nanoparticle size, contact angle, and capillary pressure can result not only in the displacement of the three-phase contact line but also in the spontaneous spreading of the nanofluid as a film on a solid surface. We show here, for the first time, that the complete wetting and spontaneous spreading of the nanofluid as a film driven by the structural disjoining pressure gradient (arising due to the nanoparticle ordering in the confined wedge film) is possible by decreasing the nanoparticle size and the interfacial tension, even at a nonzero equilibrium contact angle. Experiments were conducted on the spreading of a nanofluid composed of 5, 10, 12.5, and 20 vol % silica suspensions of 20 nm (geometric diameter) particles. A drop of canola oil was placed underneath the glass surface surrounded by the nanofluid, and the spreading of the nanofluid was monitored using an advanced optical technique. The effect of an electrolyte, such as sodium chloride, on the nanofluid spreading phenomena was also explored. On the basis of the experimental results, we can conclude that a nanofluid with an effective particle size (including the electrical double layer) of about 40 nm, a low equilibrium contact angle (<3°), and a high effective volume concentration (>30 vol %) is desirable for the dynamic spreading of a nanofluid system with an interfacial tension of 0.5 mN/m. Our experimental observations also validate the major predications of our theoretical analysis.  相似文献   

15.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

16.
In this study, we report a method for quantifying amoxicillin in pharmaceuticals in the presence of interferents using sequential injection analysis (SIA) with a diode-array spectrophotometric detector and multivariate curve resolution with alternating least squares (MCR-ALS). With a suitable analytical sequence, we can use SIA to generate a pH gradient and, for each sample, obtain a data matrix. We used augmented matrices to resolve the system and obtain the spectra and concentration profiles of the components in the sample.We studied what are the effects of imposing trilinearity at the resolution stage, how to choose the species that will be used for quantification (acid, basic or the sum of the two), and which is the most suitable concentration of the reference standard. Once the optimum conditions were established, we performed the quantification in three amoxicillin-containing pharmaceuticals (flubiotic, augmentine, and clamoxyl). With this method, determination is quick, the reactants and instrumentation are inexpensive, and pretreatment of the sample is unnecessary.  相似文献   

17.
Determination of salbutamol using sequential injection analysis (SIA) with chemiluminescence and fluorescence detection has been devised. The chemiluminescence signal was emitted during the oxidation of salbutamol by potassium permanganate in sulfuric acid medium. Sodium polyphosphate was used as chemiluminescence enhancer. The fluorescence signal (excitation wavelength 230 nm) was also measured in sulfuric acid medium. Both detection techniques were compared with respect to the application of the methods to the determination of salbutamol in biological materials. The sample pre-treatment takes place directly in the SIA system, when salbutamol is adsorbed on the solid-phase (Baker-carboxylic acid) microcolumn integrated into the system. Sulfuric acid serves both as the reagent and the eluent. The lab-made SIA system consisted of a 2.5-mL Cavro syringe pump, ten-port Vici Valco selection valve and Spectra-Physics FS 970 fluorescence detector, which was lab-modified for chemiluminescence detection. The system was controlled by a PC using originally compiled LabVIEW-supported software. Concentrations, volumes of reagents and flow rates were optimised by a simplex method. Salbutamol was determined in the linear range 0.05-10 microg mL(-1) (RSD 1.53%), with the detection limit (3 sigma) 0.03 microg mL(-1) and sample throughput of 42 samples per hour with chemiluminescence detection in standard solutions. The fluorescence detection enabled the determination of salbutamol in standard solutions in the linear range 0.5-100 microg mL(-1) (RSD 2.69%), with the detection limit 0.2 microg mL(-1) and sample throughput of 24 h(-1). The proposed methods were applied to the determination of salbutamol in human serum and urine. However, serum is a very complicated matrix and the SIA-SPE analysis did not provide satisfactory results. It was possible to determine salbutamol in human urine using this technique. Better recovery was achieved with fluorescence detection.  相似文献   

18.
Abstract

The measurements of the surface tension of the liquid Hg-In alloys were made by means of a maximum drop pressure method. The surface tension increases monotonously with increasing the In concentration. It is thermodynamically shown that the composition of the Hg atoms adsorbed on the surface is larger than that in the bulk. Experimental results are compared with calculated results due to various model theories; in particular the hard sphere model with a density-dependent cohesive potential is found to be in qualitative agreement with experimental results of both surface tensions and its temperature coefficients.  相似文献   

19.
Miller KE  Synovec RE 《Talanta》2000,51(5):921-933
The use of drops in chemical analysis methodology and instrumentation has a deeply rooted past in the area of electrochemistry through the evolution of the dropping mercury electrode (DME). This history has also been deeply rooted in the field of surface science due to the inextricable connection between surface tension forces and drop formation. While the use of the DME is well established, the evolution of drop-based analytical measurements using aqueous and/or organic drops is a rapidly emerging and diverse field, encompassing several interdisciplinary areas of science: surface science and interfacial surface tension phenomena, spectroscopic detection, analytical instrumentation hyphenation, liquid membrane separation, reagent chemistry, electrochemistry, and so on. This review of 112 references covers various aspects of drop-based analytical measurements involving aqueous and/or organic drops. The review is divided into four sections, although the classification of a particular reference into a given section can sometimes be argued. The first section considers the use of drops as a detector component. The second section deals with fundamental studies that probe drop-related chemical and physical phenomena that are relevant to current and future developments in analytical chemistry. The next section covers recent advances in the area of microfluidic sample handling and instrumentation hyphenation. The final section reports upon emerging technologies aimed toward drop-based chemical analyzers that incorporate a number of steps in a chemical analysis: microextraction, preconcentration, reagent chemistry, microfluidic handling, and detection.  相似文献   

20.
江润生  张立鹏 《化学通报》2016,79(9):793-792
表面张力是流体重要的物理性质,测定液体表面张力的方法通常包括毛细管上升法、最大气泡压力法、吊环法/吊片法、滴重法/滴体积法、旋滴法和悬滴法。本文综述了测定界面处表(界)面张力和表面压力的方法,详细介绍了基于最大拉力法(Whilhemy吊片法)改进的表面张力测试技术(Du Noüy-Padday),并且概述了这一技术近些年在生物研究、药物研发以及环境监测等领域方面的最新应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号