首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a nonlinear method to approximate solutions of a Burgers–Huxley equation with generalized advection factor and logistic reaction. The equation under investigation possesses travelling-wave solutions that are temporally and spatially monotone functions; the travelling-wave fronts considered are bounded and connect asymptotically the stationary solutions of the model. For the linear regime, the method is consistent of first order in time and second order in space. In the nonlinear scenario, we investigate conditions under which bounded initial profiles evolve into bounded new approximations. The main results report on parametric conditions that guarantee the boundedness, the positivity and the monotonicity preservation of the method. As a consequence, our recursive method is capable of preserving the temporal and the spatial monotonicity of the solutions. We provide simulations that show that, indeed, our technique preserves the positivity, the boundedness and the temporal and spatial monotonicity of solutions.  相似文献   

2.
3.
邓定文  赵紫琳 《计算数学》2022,44(4):561-584
本文研究求解二维Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)方程的一类保正保界差分格式.运用能量分析法证明了当网格比满足$R_{x}+R_{y}+[b\tau (p-1)]/2\leq\frac{1}{2}$时差分解具有一系列数学性质,包括保正性、保界性和单调性,且在无穷范数意义下有$O (\tau+h_{x}^{2}+h_{y}^{2})$的收敛阶.然后通过发展Richardson外推法得到收敛阶为$O (\tau^{2}+h_{x}^{4}+h_{y}^{4})$的外推解.最后数值实验表明数值结果与理论结果相吻合.值得提及的是在运用本文构造的Richardson外推法时对时空网格比没有增加更严格的条件.  相似文献   

4.
In this work, a class of nonstandard finite difference (NSFD) schemes are proposed to approximate the solutions of a class of generalized convection–diffusion–reaction equations. First, in the case of no diffusion, two exact finite difference schemes are presented using the method of characteristics. Based on these two exact schemes, a class of exact schemes are presented by introducing a parameter α. Second, since the forms of these exact schemes are so complicated that they are not convenient to use, a class of NSFD schemes are derived from the exact schemes using numerical approximations. It follows that, under certain conditions about denominator function of time‐step sizes, these NSFD schemes are elementary stable and the solutions are positive and bounded. Third, by means of the Mickens' technique of subequations, a new class of implicit NSFD schemes are constructed for the full convection–diffusion–reaction equations. It is shown that, under certain parameters set, these NSFD schemes are capable of preserving the non‐negativity and boundedness of the analytical solutions. Finally, some numerical simulations are provided to verify the validity of our analytical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1288–1309, 2015  相似文献   

5.
This work is an extension of the paper (Proc. R. Soc. London 2005; 461A :1927–1950) to impact oscillators with more than one degree of freedom. Given the complex and even chaotic behaviour of these non‐smooth mechanical systems, it is essential to incorporate their qualitative physical properties, such as the impact law and the frequencies of the systems, into the envisaged numerical methods if the latter is to be reliable. Based on this strategy, we design several non‐standard finite difference schemes. Apart from their excellent error bounds and unconditional stability, the schemes are analysed for their efficiency to preserve some important physical properties of the systems including, among others, the conservation of energy between consecutive impact times, the periodicity of the motion and the boundedness of the solutions. Numerical simulations that support the theory are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
We consider general virus dynamics model with virus‐to‐target and infected‐to‐target infections. The model is incorporated by intracellular discrete or distributed time delays. We assume that the virus‐target and infected‐target incidences, the production, and clearance rates of all compartments are modeled by general nonlinear functions that satisfy a set of reasonable conditions. The non‐negativity and boundedness of the solutions are studied. The existence and stability of the equilibria are determined by a threshold parameter. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we propose an efficient implementation of a finite-difference method employed to approximate the solutions of a system of partial differential equations that appears in the investigation of the growth of biological films. The associated homogeneous Dirichlet problem is discretized using a linear approach. This discretization yields a positivity- and boundedness-preserving implicit technique which is represented in vector form through the multiplication by a sparse matrix. A straightforward implementation of this methodology would require a substantial amount of computer memory and time, but the problem is conveniently coded using a continual reduction of the zero sub-matrices of the representing matrix. In addition to the conditions that guarantee the positivity and the boundedness of the numerical approximations, we establish some parametric constraints that assure that the same properties for the discrete total mass at each point of the mesh-grid and each discrete time are actually satisfied. Some simulations are provided in order to illustrate both the performance of the implementation, and the preservation of the positivity and the boundedness of the numerical approximations.  相似文献   

8.
In this work, we develop an exact finite-difference methodology to approximate the solution of a diffusive partial differential equation with Burgers advection and Huxley reaction law. The model under investigation possesses solitary-wave solutions which are positive, bounded, and both spatially and temporally monotone. On the other hand, our computational model is a nonlinear technique for which the new approximations are provided as the roots of an uncoupled system of cubic polynomials, in which the constant coefficients are functions of the model parameters and the numerical step-sizes. In this system, each cubic equation is solved using Cardano’s formulas. The method proposed in this work preserves the positivity, the boundedness and the monotonicity of approximations, as well as the constant solutions of the continuous model. The simulations provided in this work show a good agreement with respect to the analytical solutions employed.  相似文献   

9.
In this work, we propose a finite-difference scheme to approximate the solutions of a generalization of the classical, one-dimensional, Newell-Whitehead-Segel equation from fluid mechanics, which is an equation for which the existence of bounded solutions is a well-known fact. The numerical method preserves the skew-symmetry of the problem of interest, and it is a non-standard technique which consistently approximates the solutions of the equation under investigation, with a consistency of the first order in time and of the second order in space. We prove that, under relatively flexible conditions on the computational parameters of the method, our technique yields bounded numerical approximations for every set of bounded initial estimates. Some simulations are provided in order to verify the validity of our analytical results. In turn, the validity of the computational constraints under which the method guarantees the preservation of the boundedness of the approximations, is successfully tested by means of computational experiments in some particular instances.  相似文献   

10.
In this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19 (2014), pp. 1907–1920]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some numerical experiments are conducted in order to assess the validity of the analytical results. We conclude that the methodology under investigation is a fast, nonlinear, explicit, stable, convergent numerical technique that preserves the positivity, the boundedness and the monotonicity of approximations, making it an ideal tool in the study of some travelling-wave solutions of the mathematical model of interest. This note closes proposing new avenues of future research.  相似文献   

11.
Departing from a generalized Burgers–Huxley partial differential equation, we provide a Mickens-type, nonlinear, finite-difference discretization of this model. The continuous system is a nonlinear regime for which the existence of travelling-wave solutions has been established previously in the literature. We prove that the method proposed also preserves many of the relevant characteristics of these solutions, such as the positivity, the boundedness and the spatial and the temporal monotonicity. The main results provide conditions that guarantee the existence and the uniqueness of monotone and bounded solutions of our scheme. The technique was implemented and tested computationally, and the results confirm both a good agreement with respect to the travelling-wave solutions reported in the literature and the preservation of the mathematical features of interest.  相似文献   

12.
We consider an anisotropic phase‐field model for the isothermal solidification of a binary alloy due to Warren–Boettinger ( Acta. Metall. Mater. 1995; 43 (2):689). Existence of weak solutions is established under a certain convexity condition on the strongly non‐linear second‐order anisotropic operator and Lipschitz and boundedness assumptions for the non‐linearities. A maximum principle holds that guarantees the existence of a solution under physical assumptions on the non‐linearities. The qualitative properties of the solutions are illustrated by a numerical example. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
甘四清  史可 《计算数学》2010,32(3):247-264
一类重要的常微分方程源自用线方法求解非线性双曲型 偏微分方程,这类常微分方程的解具有单调性, 因此要求数值方法能保持原系统的这种性质.本文研究多步Runge-Kutta方法求解常微分方程初值问题的保单调性.分别获得了多步Runge-Kutta方法是条件单调和无条件单调的充分条件.    相似文献   

14.
In this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity. In the present work, we establish that the method is convergent with linear order of convergence in time and quadratic order in space. Some numerical experiments are provided in order to support the analytical results.  相似文献   

15.
16.
In this paper we study the spatial behaviour of solutions of some problems for the dual‐phase‐lag heat equation on a semi‐infinite cylinder. The theory of dual‐phase‐lag heat conduction leads to a hyperbolic partial differential equation with a third derivative with respect to time. First, we investigate the spatial evolution of solutions of an initial boundary‐value problem with zero boundary conditions on the lateral surface of the cylinder. Under a boundedness restriction on the initial data, an energy estimate is obtained. An upper bound for the amplitude term in this estimate in terms of the initial and boundary data is also established. For the case of zero initial conditions, a more explicit estimate is obtained which shows that solutions decay exponentially along certain spatial‐time lines. A class of non‐standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T are assumed proportional to their initial values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Two numerical methods for a one‐dimensional haptotaxis model, which exploit the use of van Leer flux limiter, are developed and analyzed. Sufficient conditions time step size and flux limiting are given for such formulation to ensure the non‐negativity of the discrete solution and second‐order accuracy in space. Another advantage is that we avoid solving large nonlinear systems of algebraic equations. The discrete preservation of total conservation of cell density, concentration, and logarithmic density is also verified for the numerical solution. Numerical results concerning accuracy, convergence rate, positivity, and conservation properties are presented and discussed. Similar approach could be applied efficiently in the corresponding two‐ and three‐dimensional problems. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

18.
We devise a new class of asymptotic‐preserving Godunov‐type numerical schemes for hyperbolic systems with stiff and nonstiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator‐splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small, and in‐between values of ε and second, to make optional the choice of the numerical scheme in the asymptotic regime ε tends to zero. The latter property may be of particular interest to make easier and more efficient the coupling at a fixed spatial interface of two models involving very different values of ε. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
The Burgers' equation, a simplification of the Navier–Stokes equations, is one of the fundamental model equations in gas dynamics, hydrodynamics, and acoustics that illustrates the coupling between convection/advection and diffusion. The kinetic energy enjoys boundedness and monotone decreasing properties that are useful in the study of the asymptotic behavior of the solution. We construct a family of non‐standard finite difference schemes, which replicate the energy equality and the properties of the kinetic energy. Our approach is based on Mickens' rule [Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994.] of nonlocal approximation of nonlinear terms. More precisely, we propose a systematic nonlocal way of generating approximations that ensure that the trilinear form is identically zero for repeated arguments. We provide numerical experiments that support the theory and demonstrate the power of the non‐standard schemes over the classical ones. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
A study of the natures of the processes that are solutions of some finite difference stochastic equations, the right‐hand member of which is a stationary process, is given in the paper. Since the principal application of the present work concerns ARIMA models with or without seasonal variation, these processes are named G‐ARIMA. First, a criterion for a G‐ARIMA process to be stationary is established and some properties of a special class of stationary G‐ARIMA processes are studied. Then, we deduce some conditions for a finite difference stochastic equation to uniquely possess non‐stationary solutions. These have the particular property that their backward shift‐operator may be either a linear or a non‐linear operator, depending on the initial conditions of the solutions. So criteria are established for a non‐stationary G‐ARIMA process to have a bounded linear backward shift operator. Finally, some further properties of the G‐ARIMA processes are given, by comparing them with the broad class of V‐bounded processes. This comparison shows that a non‐stationary process cannot be at the same time G‐ARIMA and V‐bounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号