首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wettability of electrolytically oxidized graphite fibers has been investigated by contact angle measurements employing the Wilhelmy method. The atomic ratio of oxygen to carbon, O/C, in the surface layer of the graphite fiber increased with increasing electric specific charge. Contact angle hysteresis was not observed for the untreated graphite fiber (O/C=0.01). The contact angles decreased with increasing O/C, especially for the receding angle, and approached constant for O/C>0.2. The nondispersive and dispersive surface free energies of the oxidized graphite fibers were calculated from the experimentally determined contact angles. The nondispersive surface free energy increased by the oxidation, whereas the dispersive one decreased. From the results of surface analysis, it was found that the changes in the nondispersive and dispersive surface free energies were caused by the increase in O/C ratio and the decrease in surface crystallinity, respectively.  相似文献   

2.
The surface free energy of modified silica as well as of PET oligomers was evaluated through measurements of specific retention volumes of several probe molecules by use of the adsorption and adhesion principles in inverse gas chromatography. The nondispersive component of surface free energy of most silica fillers was larger than the dispersive component and the acidic component was much larger than the basic one, which indicated that the surfaces of most silica fillers were rather acidic. These methods were also applied to PET oligomer and it was found that the surface free energy of PET oligomer, regardless of preparation method, consisted of an almost dispersive component, suggesting that the surface of PET was neutral. The amount of PET oligomer adsorbed for the heat-treated silica fillers in acidic solvent increased linearly with increased acidic component of the surface free energy, which indicates that the acidic component of the surface free energy may be responsible for the adsorption. However, the adsorption amount on modified silica is much smaller than that for the heat-treated silica fillers because of steric hindrance caused by the attached organic chain, suggesting that the adsorption cannot be determined only by the surface free energy.  相似文献   

3.
The dispersive component s d of the surface free energy of glass fibers and its interaction energy with alkanes, benzene, 1-nitropropane, ethyleneglycol, glycerol, formamide, and water were quantitatively determined by the tensiometric method within two liquids. The values of nondispersive interaction energy I SL p were found to be a linear function of the square root of the nondispersive component of the surface free energy of liquids. This suggests that the nondispersive interaction energy may be represented by the geometric mean of the nondispersive component of the surface free energy of a solid and a liquid. The slope gave the nondispersive component s p of the surface free energy. The s p values are 33 and 14 mJ/m2 for the untreated and aminosilane-treated fibers, respectively, suggesting that organophilic character has developed on the surface after aminosilane treatment. The s p value was almost similar after the treatment, probably because of the polar characteristics of amino groups.  相似文献   

4.
The surface free energy of a monolithic silica xerogel treated at 1000°C has been measured by inverse gas chromatography in the temperature range 25–150°C using n-alkanes. Values of the dispersive component, S D, vary from 49.07 mJ·m–2 at 25°C to 17.20 mJ·m–2 at 150°C. The S D value obtained at 25°C is lower than that found for amorphous and crystalline silicas but higher than that found for glass fibres meaning that the heat treatment at 1000°C changes drastically the structure of the silica xerogel showing a surface similar to a glass. However, the higher value of S D in comparison to glass fibres can be attributed to the mesoporous structure present in the silica xerogel. In the temperature range of 60–90°C there exists an abrupt change of the S D values as well as in the dispersive component of the surface enthalpy, h S D. Such abrupt change can be attributed to an entropic contribution of the surface free energy.  相似文献   

5.
The melting point and the heat of fusion were measured by differential scanning calorimetry (DSC) as a function of draw ratio for linear polyethylene. Both the melting point and the heat of fusion increased with an increase in draw ratio. The plot of the heat of fusion against the melting point was approximately linear. The linear relation is explained theoretically using the assumption that the increases in the melting point and the heat of fusion are due to the orientation of the amorphous phase caused by drawing. The excess free energy of the amorphous phase derived from the orientation increases the melting point, and the amorphous phase absorbs heat for its randomization at the melting point. Hence for drawn samples having an oriented amorphous phase not only the crystal phase but also the amorphous phase contribute to the heat of fusion.  相似文献   

6.
Summary Sensitivities of a solid surface to dispersive and nondispersive (polar) interactions can be readily estimated by a multiple regression analysis of inverse gas chromatographic retention data of a set of probe solutes. This analysis is based on linear free energy relationships (LFERs). The sensitivity to the latter type of interactions can be used as a measure of the surface polarity of the solid. This has been shown in the case of a graphitized carbon fiber and the method is also applicable to other solids.  相似文献   

7.
The adsorption ofn-heptane,n-octane,n-nonane, andn-decane on untreated wood fiber and wood fiber treated with maleated polypropylene was studied by inverse gas chromatography (IGC) at infinite dilution or zero surface coverage. The specific retention volume increased with increasing probe chain length, decreased with increasing column temperature, and increased with increasing maleated polypropylene concentration. The enthalpy of adsorption increased with increasing chain length of the probe vapors. The enthalpy of adsorption remained constant after the treatment of wood fiber. The London dispersive component of the surface free energy decreased with the column temperature and showed no dependency with either the type of wood fiber or the maleated polypropylene concentration.  相似文献   

8.
Single-crystal mats of ultrahigh-molecular-weight polyethylene can be drawn uniformly to high draw ratios, more than 20χ at the highest, after the necking process is completed. The dynamic mechanical modulus of the drawn mats increases markedly during the uniform drawing stage. The structural changes induced by the uniform drawing at 100°C have been followed by wide-angle and small-angle x-ray scattering, infrared absorption, differential scanning calorimetry, and birefringence. The crystallinity is estimated from the x-ray amorphous scattering intensity, the IR absorbance of gauche bands, the heat of fusion from DSC, and the density. The estimated crystallinities of the drawn mats are all very high and increase slightly and monotonically with increased drawing after necking, though the values of the crystallinity depend on the method of estimation. IR gauche bands and the SAXS peak due to the long period disappear at a draw ratio of about 80χ. All the results suggest that the uniform drawing after necking destroys the two-phase structure made up of alternately stacked crystalline and amorphous regions and then reorganizes it into a single-phase crystalline structure.  相似文献   

9.
The surface and adsorption characteristics of carbon blacks treated with H(3)PO(4), KOH, and C(6)H(6) were investigated. The equilibrium spreading pressure (pi(e)), surface energy (gamma(s)), and specific surface area (S(BET)) were studied by the BET method with N(2) adsorption. In this work, an interpretation based on the nitrogen amount adsorbed for filling a monolayer (a(0)) was proposed for the determination of the Gibbs free energy of nitrogen adsorption, allowing evaluation of the equilibrium spreading pressure or London dispersive component of the surface free energy of the carbon blacks studied. Also, the microstructures of the carbon blacks treated were investigated by transmission electron microscopy. Acidic treatment led to significant decreases in adsorption amount, S(BET), and surface free energy of the carbon blacks, due to aggregation of the microstructures and increasing weight of the swollen specimen in an equilibrium state. Polar basic and nonpolar chemical treatments resulted in an increase of the equilibrium spreading pressure or London dispersive component of surface free energy of the carbon blacks without significantly changing the surface and adsorption properties and microstructures. Results from the surface energetics and parameter of polymer-filler interaction (chi) showed that the tearing energy of the composites is greatly dependent on the carbon blacks studied in the treatment. Copyright 2000 Academic Press.  相似文献   

10.
The surface free energy of polyacrylonitrile carbon fibers was investigated by using the Wilhelmy technique. The difference in surface free energy between immersion and emersion was observed for the carbon fiber pyrolyzed at 2500 °C.In contrast, the hysteresis disappeared with repyrolyzation of the carbon fibers at 3000 °C. Auger electron spectroscopic analysis indicated that the surface of the latter carbon fiber (repyrolyzed at 3000 °C) consisted of the basal planes of graphite. Rough surface topography of the carbon fiber repyrolyzed at 3000 °C, as observed by scanning electron microscope, did not affect the hysteresis. Therefore, the contact angle hysteresis was attributed to the chemical adsorbants on the activation sites of the fiber surfaces, as detected by Auger electron spectroscopy.  相似文献   

11.
A zone-drawing and zone-annealing treatment was applied to poly(p-phenylene sulfide) fibers in order to improve their mechanical properties. The zone-drawing (ZD) was carried out at a drawing temperature of 90°C under an applied tension of 5.5 MPa, and the zone-annealing (ZA) was carried out at an annealing temperature of 220°C under 138.0 MPa. The differential scanning calorimetry (DSC) thermogram of the ZD fiber had a broad exothermic transition (Tc = 110°C) attributed to cold-crystallization and a melting endotherm peaking at 286°C. The Tc of the ZD fiber was lower than that (Tc = 128°C) of the undrawn fiber. In the temperature dependence of storage modulus (E′) for the ZD fiber, the E′ values decreased with increasing temperature, but increased slightly in the temperature range of 90–100°C, and decreased again. The slight increase in E′ was attributable to the additional increase in the crosslink density of the network, which was caused by strain-induced crystallization during measurement. The resulting ZA fiber had a draw ratio of 6.0, a degree of crystallinity of 38%, a tensile modulus of 8 GPa, and a tensile strength of 0.7 GPa. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1731–1738, 1998  相似文献   

12.
The effect of surface oxyfluorination on low-density polyethylene (LDPE) film was studied in terms of surface functionality and surface energetics of the film surfaces, which can be attributed to improvement of the dyeability. The growth of functional groups and surface free energy was confirmed by FTIR-ATR, XPS, and contact angle methods. As a result, the total surface free energy was increased with oxyfluorination time, as a progressive increase of the polar component together with a small decrease of the dispersive component of surface free energy. From the dyeability test using the Kubelka-Munk equation, it was found that the oxyfluorination treatment plays an important role in the growth of oxygen-containing functional groups of LDPE film, resulting in improving the dyeability with a basic dyeing agent. A direct linear relationship is shown between the specific component of surface free energy and the K/S value for this work.  相似文献   

13.
Wood-fiber phenol-formaldehyde-resin (PFR) modified surfaces, obtained from the adsorption of a PFR/water solution, are investigated as a function of the nature and the amount of PFR adsorbed. Surface are measurements are performed by using krypton adsorption at 77 K. Chemical modification is monitored by the electron spectroscopy for chemical analysis (ESCA) technique and the surface energy by the inverse phase gas chromatography (IPGC) method at infinite dilution. The London dispersive componentγ S L of the surface energy shows a relationship to the concentration of carbon and oxgen at the fiber surface.γ S L increases from 27.5 mN·m−1 for the untreated fiber to 42.5 mN·m−1 for the fibers treated with 20% high molecular-weight-grade phenol-formaldehyde. The surface atomic ratio O/C determined using the ESCA technique exhibits a decrease from 44% for untreated to 31% for treated samples. Surface area also decreases from 2.09 m2/g to 1.50 m2/g. The PFR adsorbed by wood fibers is observed as the dispersive component of surface energy starts to increase, as the surface oxygen concentration decreases, and on the surface area of the wood fiber.  相似文献   

14.
The surface energy of monolithic silica xerogels was examined by measuring the interaction of organic probes with xerogels heated at temperatures close to the gel-to-glass transition temperature. Values of the dispersive component of the surface energy, , between 60 and 80 mJ m-2 have been observed using n-alkanes for silica xerogels heated at 700, 800 and 900°C. At 1000°C, decreases to 8.37 mJ · m-2. Also the differential heat of adsorption, variation of standard free energy and entropy of adsorption decrease when the silica xerogel is heated at 1000°C, showing a lower interaction potential of the organic probes with the silica surface. For the silica xerogels heated between 700 and 900°C, the acid character varies in accordance with the variation of the chemical nature of the silica. Upon heating at 1000°C, both acid and base characters are very close in accordance with a neutral surface. Within the experimental conditions used in this work, the surface of the obtained monolithic silica xerogels behaves as a glass surface when the treating temperature is 1000°C.  相似文献   

15.
The effect of anodic oxidation on high-strength polyacrylonitrile-based carbon fibers has been studied in terms of fiber surface energetics and fracture toughness of the composites. According to contact angle measurements based on the wicking rate of a test liquid, anodic oxidation leads to an increase in surface free energy, mainly due to the increase of its specific (or polar) component. For the carbon-fiber-reinforced epoxy resin matrix system, a direct linear relationship is shown between the specific component and the critical stress intensity factor measured by the single edge notched beam fracture toughness test. From a surface-energetic point of view, the anodic treatment may be suitable for carbon fibers incorporated in a polar organic matrix, resulting in an increased specific component of the surface free energy. Good wetting plays an important role in improving the degree of adhesion at interfaces between fibers and matrices of the resulting composites. Copyright 2000 Academic Press.  相似文献   

16.
Polyacrylonitrile fibers were treated with a nitrogen glow-discharge plasma. The surfaces of untreated and treated fibers were examined with contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Surface energy calculations of the fibers were carried out from contact angle measurements using the relationships developed by Fowkes. It is found that plasma treatment causes a reduction in water contact angle on the fiber surfaces. The dispersion component of surface energy changes slightly, while the polar component is increased significantly from 14.6 mN/m to 58.7 mN/m and the total surface energy increase is 139%. The increase of surface energy is mainly caused by the introduction of hydrophilic groups on the fiber surfaces after plasma treatment.  相似文献   

17.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

18.
Evolution of wood surface free energy after heat treatment   总被引:2,自引:0,他引:2  
Surface free energies of pine and beech wood were investigated before and after heat treatment using the Lifshitz-van der Waals/acid-base approach from contact angles measured by the Wilhelmy method. The results obtained showed that the decrease of the electron-donating component of the acid-base component was the major parameter affecting the wetting of the modified wood's surface. The Lifshitz-van der Waals component was slightly modified after heat treatment indicating that the atomic and molecular interactions due to permanent or induced dipoles between wood macromolecules were weakly modified. Modification of the surface chemical composition was studied by X-ray photoelectron spectroscopy (XPS) and titration of acidity. XPS indicated an important decrease of the O/C ratio after heat treatment explaining the decrease of the electron-donating component (γ) of the surface free energy. The decarboxylation and degradation of glucuronic acids present in hemicelluloses, demonstrated by titration of carboxylic acid functions of wood, had only limited effect on the electron-accepting component (γ+).  相似文献   

19.
Inverse gas chromatography (IGC) was used to determine the dispersive component of the free energy as well as the acid-base properties of cellulose fibre surfaces, before and after modification by corona treatment. It was found that the corona treatment increases both the dispersive contribution to surface energy and its acidic character, whereas only a slight increase in its basicity was observed. It was also found that some chemical degradation of the surface occurs at high corona currents. The extent of modification of the surface properties, as revealed by IGC, was correlated to the surface chemical composition deduced from XPS analysis as well as with the electrical conductance and the pH of the water suspensions of the cellulose fibres.  相似文献   

20.
The effect of stretching on the thermal behavior of acrylic fibers was investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and Fourier transform infrared spectroscopy (FTIR). In air atmosphere, the peak temperature of the dynamic DSC thermogram was significantly lowered from 289 to 273 °C when the gel fibers (undrawn) were drawn to a draw ratio of 11.2. However, the initiation temperature was unchanged at 202 °C. The shoulder in the region of 310–380 °C was gradually converted to a sharp peak during the drawing process. However, the dynamic DSC in nitrogen atmosphere did not change in all cases. In air atmosphere the total heat liberated, ΔH, for gel fiber was 851 J g?1. However, upon drawing to 11.2, ΔH increased to 1580 J g?1 showing an increase in the total chemical changes. An intimate relationship of chemical changes during the heating process was observed with FTIR of heated samples at various temperatures. The initiation of a DSC exotherm in air begins with nitrile cyclization, and subsequently dehydrogenation was initiated between 220 and 260 °C. An increase in the X‐ray orientation factor and sonic modulus gave a correlation between the stretching draw ratio and crystalline/overall molecular orientation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2949–2958, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号