首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

2.
Given a smooth, symmetric and homogeneous of degree one function \(f\left( \lambda _{1},\ldots ,\lambda _{n}\right) \) satisfying \(\partial _{i}f>0\quad \forall \,i=1,\ldots , n\), and a properly embedded smooth cone \({\mathcal {C}}\) in \({\mathbb {R}}^{n+1}\), we show that under suitable conditions on f, there is at most one f self-shrinker (i.e. a hypersurface \(\Sigma \) in \({\mathbb {R}}^{n+1}\) satisfying \(f\left( \kappa _{1},\ldots ,\kappa _{n}\right) +\frac{1}{2}X\cdot N=0\), where \(\kappa _{1},\ldots ,\kappa _{n}\) are principal curvatures of \(\Sigma \)) that is asymptotic to the given cone \({\mathcal {C}}\) at infinity.  相似文献   

3.
Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.  相似文献   

4.
We present a mapping of the binary prefer-opposite de Bruijn sequence of order n onto the binary prefer-one de Bruijn sequence of order \(n-1\). The mapping is based on the differentiation operator \(D(\langle {b_1,\ldots ,b_l}\rangle ) = \langle b_2-b_1, b_3-b_2,\ldots , b_{l}-b_{l-1} \rangle \) where bit subtraction is modulo two. We show that if we take the prefer-opposite sequence \(\langle {b_1,b_2,\ldots ,b_{2^n}}\rangle \), apply D to get the sequence \(\langle {\hat{b}_1, \ldots , \hat{b}_{2^n-1}}\rangle \) and drop all the bits \(\hat{b}_i\) such that \(\langle {\hat{b}_i,\ldots ,\hat{b}_{i+n-1}}\rangle \) is a substring of \(\langle {\hat{b}_1,\ldots ,\hat{b}_{i+n-2}}\rangle \), we get the prefer-one de Bruijn sequence of order \(n-1\).  相似文献   

5.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

6.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

7.
Let \(\{X_i, i\ge 1\}\) be i.i.d. \(\mathbb {R}^d\)-valued random vectors attracted to operator semi-stable laws and write \(S_n=\sum _{i=1}^{n}X_i\). This paper investigates precise large deviations for both the partial sums \(S_n\) and the random sums \(S_{N(t)}\), where N(t) is a counting process independent of the sequence \(\{X_i, i\ge 1\}\). In particular, we show for all unit vectors \(\theta \) the asymptotics
$$\begin{aligned} {\mathbb P}(|\langle S_n,\theta \rangle |>x)\sim n{\mathbb P}(|\langle X,\theta \rangle |>x) \end{aligned}$$
which holds uniformly for x-region \([\gamma _n, \infty )\), where \(\langle \cdot , \cdot \rangle \) is the standard inner product on \(\mathbb {R}^d\) and \(\{\gamma _n\}\) is some monotone sequence of positive numbers. As applications, the precise large deviations for random sums of real-valued random variables with regularly varying tails and \(\mathbb {R}^d\)-valued random vectors with weakly negatively associated occurrences are proposed. The obtained results improve some related classical ones.
  相似文献   

8.
The spectral unit ball \(\Omega _n\) is the set of all \(n\times n\) matrices M with spectral radius less than 1. Let \(\pi (M) \in \mathbb {C}^n\) stand for the coefficients of the characteristic polynomial of a matrix M (up to signs), i.e. the elementary symmetric functions of its eigenvalues. The symmetrized polydisc is \({{\mathbb {G}}}_n:=\pi (\Omega _n)\). When investigating Nevanlinna–Pick problems for maps from the disk to the spectral ball, it is often useful to project the map to the symmetrized polydisc (for instance to obtain continuity results for the Lempert function): if \(\Phi \in {\mathrm {Hol}}(\mathbb {D}, \Omega _n)\), then \(\pi \circ \Phi \in {\mathrm {Hol}}(\mathbb {D}, {{\mathbb {G}}}_n)\). Given a map \(\varphi \in {\mathrm {Hol}}(\mathbb {D}, {{\mathbb {G}}}_n)\), we are looking for necessary and sufficient conditions for this map to “lift through given matrices”, i.e. find \(\Phi \) as above so that \(\pi \circ \Phi = \varphi \) and \(\Phi (\alpha _j) = A_j\), \(1\le j \le N\). A natural necessary condition is \(\varphi (\alpha _j)=\pi (A_j)\), \(1\le j \le N\). When the matrices \(A_j\) are derogatory (i.e. do not admit a cyclic vector) new necessary conditions appear, involving derivatives of \(\varphi \) at the points \(\alpha _j\). We prove that those conditions are necessary and sufficient for a local lifting. We give a formula which performs the global lifting in small dimensions (\(n \le 5\)), and a counter-example to show that the formula fails in dimensions 6 and above.  相似文献   

9.
Two novel characterizations of self-decomposable Bernstein functions are provided. The first one is purely analytic, stating that a function \(\varPsi \) is the Bernstein function of a self-decomposable probability law \(\pi \) on the positive half-axis if and only if alternating sums of \(\varPsi \) satisfy certain monotonicity conditions. The second characterization is of probabilistic nature, showing that \(\varPsi \) is a self-decomposable Bernstein function if and only if a related d-variate function \(C_{\psi ,d}\), \(\psi :=\exp (-\varPsi )\), is a d-variate copula for each \(d \ge 2\). A canonical stochastic construction is presented, in which \(\pi \) (respectively \(\varPsi \)) determines the probability law of an exchangeable sequence of random variables \(\{U_k\}_{k\in {\mathbb {N}}}\) such that \((U_1,\ldots ,U_d) \sim C_{\psi ,d}\) for each \(d \ge 2\). The random variables \(\{U_k\}_{k\in {\mathbb {N}}},\) are i.i.d. conditioned on an increasing Sato process whose law is characterized by \(\varPsi \). The probability law of \(\{U_k\}_{k \in {\mathbb {N}}}\) is studied in quite some detail.  相似文献   

10.
Let \(\pi _{\varphi }\) (or \(\pi _{\psi }\)) be an automorphic cuspidal representation of \(\text {GL}_{2} (\mathbb {A}_{\mathbb {Q}})\) associated to a primitive Maass cusp form \(\varphi \) (or \(\psi \)), and \(\mathrm{sym}^j \pi _{\varphi }\) be the jth symmetric power lift of \(\pi _{\varphi }\). Let \(a_{\mathrm{sym}^j \pi _{\varphi }}(n)\) denote the nth Dirichlet series coefficient of the principal L-function associated to \(\mathrm{sym}^j \pi _{\varphi }\). In this paper, we study first moments of Dirichlet series coefficients of automorphic representations \(\mathrm{sym}^3 \pi _{\varphi }\) of \(\text {GL}_{4}(\mathbb {A}_{\mathbb {Q}})\), and \(\pi _{\psi }\otimes \mathrm{sym}^2 \pi _{\varphi }\) of \(\text {GL}_{6}(\mathbb {A}_{\mathbb {Q}})\). For \(3 \le j \le 8\), estimates for \(|a_{\mathrm{sym}^j \pi _{\varphi }}(n)|\) on average over a short interval have also been established.  相似文献   

11.
Let \(\alpha ,\beta \) be orientation-preserving diffeomorphism (shifts) of \(\mathbb {R}_+=(0,\infty )\) onto itself with the only fixed points \(0\) and \(\infty \) and \(U_\alpha ,U_\beta \) be the isometric shift operators on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f=(\alpha ')^{1/p}(f\circ \alpha )\), \(U_\beta f=(\beta ')^{1/p}(f\circ \beta )\), and \(P_2^\pm =(I\pm S_2)/2\) where
$$\begin{aligned} (S_2 f)(t):=\frac{1}{\pi i}\int \limits _0^\infty \left( \frac{t}{\tau }\right) ^{1/2-1/p}\frac{f(\tau )}{\tau -t}\,d\tau , \quad t\in \mathbb {R}_+, \end{aligned}$$
is the weighted Cauchy singular integral operator. We prove that if \(\alpha ',\beta '\) and \(c,d\) are continuous on \(\mathbb {R}_+\) and slowly oscillating at \(0\) and \(\infty \), and
$$\begin{aligned} \limsup _{t\rightarrow s}|c(t)|<1, \quad \limsup _{t\rightarrow s}|d(t)|<1, \quad s\in \{0,\infty \}, \end{aligned}$$
then the operator \((I-cU_\alpha )P_2^++(I-dU_\beta )P_2^-\) is Fredholm on \(L^p(\mathbb {R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.
  相似文献   

12.
Let \((\xi _n)_{n=0}^\infty \) be a nonhomogeneous Markov chain taking values in a finite state-space \(\mathbf {X}=\{1,2,\ldots ,b\}\). In this paper, we will study the generalized entropy ergodic theorem with almost-everywhere and \(\mathcal {L}_1\) convergence for nonhomogeneous Markov chains; this generalizes the corresponding classical results for Markov chains.  相似文献   

13.
In this paper, we investigate a hypothesis testing problem in regular semiparametric models using the Hellinger distance approach. Specifically, given a sample from a semiparametric family of \(\nu \)-densities of the form \(\{f_{\theta ,\eta }:\theta \in \Theta ,\eta \in \Gamma \},\) we consider the problem of testing a null hypothesis \(H_{0}:\theta \in \Theta _{0}\) against an alternative hypothesis \(H_{1}:\theta \in \Theta _{1},\) where \(\eta \) is a nuisance parameter (possibly of infinite dimensional), \(\nu \) is a \(\sigma \)-finite measure, \(\Theta \) is a bounded open subset of \(\mathbb {R}^{p}\), and \(\Gamma \) is a subset of some Banach or Hilbert space. We employ the Hellinger distance to construct a test statistic. The proposed method results in an explicit form of the test statistic. We show that the proposed test is asymptotically optimal (i.e., locally uniformly most powerful) and has some desirable robustness properties, such as resistance to deviations from the postulated model and in the presence of outliers.  相似文献   

14.
Let \(\varphi \) be an analytic self map of the open unit disc \(\mathbb {D}\). Assume that \(\psi \) is an analytic map of \(\mathbb {D}\). Suppose that f is in the Hardy–Hilbert space of the open unit disc \(H^2\). The operator that takes f into \(\psi \cdot f \circ \varphi \) is a weighted composition operator, and is denoted by \(C_{\psi ,\varphi }\). In this paper we relate the convergence of the sequence \(\{ C_{\psi _n,\varphi _n}\}\) in different operator topologies to the convergence of the two sequences of maps \(\{\varphi _n \}\) and \(\{ \psi _n\}\).  相似文献   

15.
We give a new, systematic proof for a recent result of Larry Guth and thus also extend the result to a setting with several families of varieties: For any integer \(D\ge 1\) and any collection of sets \(\Gamma _1,\ldots ,\Gamma _j\) of low-degree k-dimensional varieties in \(\mathbb {R}^n\), there exists a non-zero polynomial \(p\in \mathbb {R}[X_1,\ldots ,X_n]\) of degree at most D, so that each connected component of \(\mathbb {R}^n{\setminus }Z(p)\) intersects \(O(jD^{k-n}|\Gamma _i|)\) varieties of \(\Gamma _i\), simultaneously for every \(1\le i\le j\). For \(j=1\), we recover the original result by Guth. Our proof, via an index calculation in equivariant cohomology, shows how the degrees of the polynomials used for partitioning are dictated by the topology, namely, by the Euler class being given in terms of a top Dickson polynomial.  相似文献   

16.
We choose some special unit vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) in \({\mathbb {R}}^3\) and denote by \({\mathscr {L}}\subset {\mathbb {R}}^5\) the set of all points \((L_1,\ldots ,L_5)\in {\mathbb {R}}^5\) with the following property: there exists a compact convex polytope \(P\subset {\mathbb {R}}^3\) such that the vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) (and no other vector) are unit outward normals to the faces of P and the perimeter of the face with the outward normal \({\mathbf {n}}_k\) is equal to \(L_k\) for all \(k=1,\ldots ,5\). Our main result reads that \({\mathscr {L}}\) is not a locally-analytic set, i.e., we prove that, for some point \((L_1,\ldots ,L_5)\in {\mathscr {L}}\), it is not possible to find a neighborhood \(U\subset {\mathbb {R}}^5\) and an analytic set \(A\subset {\mathbb {R}}^5\) such that \({\mathscr {L}}\cap U=A\cap U\). We interpret this result as an obstacle for finding an existence theorem for a compact convex polytope with prescribed directions and perimeters of the faces.  相似文献   

17.
Let a sequence \(\Lambda \subset {\mathbb {C}}\) be such that the corresponding system of exponential functions \({\mathcal {E}}(\Lambda ):=\left\{ {\text {e}}^{i\lambda t}\right\} _{\lambda \in \Lambda }\) is complete and minimal in \(L^2(-\pi ,\pi )\), and thus each function \(f\in L^2(-\pi ,\pi )\) corresponds to a nonharmonic Fourier series in \({\mathcal {E}}(\Lambda )\). We prove that if the generating function \(G\) of \(\Lambda \) satisfies the Muckenhoupt \((A_2)\) condition on \({\mathbb {R}}\), then this series admits a linear summation method. Recent results show that the \((A_2)\) condition cannot be omitted.  相似文献   

18.
In this paper we perform a blow-up and quantization analysis of the fractional Liouville equation in dimension 1. More precisely, given a sequence \(u_k :\mathbb {R}\rightarrow \mathbb {R}\) of solutions to
$$\begin{aligned} (-\Delta )^\frac{1}{2} u_k =K_ke^{u_k}\quad \text {in} \quad \mathbb {R}, \end{aligned}$$
(1)
with \(K_k\) bounded in \(L^\infty \) and \(e^{u_k}\) bounded in \(L^1\) uniformly with respect to k, we show that up to extracting a subsequence \(u_k\) can blow-up at (at most) finitely many points \(B=\{a_1,\ldots , a_N\}\) and that either (i) \(u_k\rightarrow u_\infty \) in \(W^{1,p}_{{{\mathrm{loc}}}}(\mathbb {R}{\setminus } B)\) and \(K_ke^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}K_\infty e^{u_\infty }+ \sum _{j=1}^N \pi \delta _{a_j}\), or (ii) \(u_k\rightarrow -\infty \) uniformly locally in \(\mathbb {R}{\setminus } B\) and \(K_k e^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}\sum _{j=1}^N \alpha _j \delta _{a_j}\) with \(\alpha _j\ge \pi \) for every j. This result, resting on the geometric interpretation and analysis of (1) provided in a recent collaboration of the authors with T. Rivière and on a classical work of Blank about immersions of the disk into the plane, is a fractional counterpart of the celebrated works of Brézis–Merle and Li–Shafrir on the 2-dimensional Liouville equation, but providing sharp quantization estimates (\(\alpha _j=\pi \) and \(\alpha _j\ge \pi \)) which are not known in dimension 2 under the weak assumption that \((K_k)\) be bounded in \(L^\infty \) and is allowed to change sign.
  相似文献   

19.
In this paper, we consider the initial value problem for the nonlinear fractional differential equations
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} D^\alpha u(t)=f(t,u(t),D^{\beta _1}u(t),\ldots ,D^{\beta _N}u(t)), \quad &{}t\in (0,1],\\ D^{\alpha -k}u(0)=0, \quad &{}k=1,2,\ldots ,n, \end{array} \right. \end{aligned}$$
where \(\alpha >\beta _1>\beta _2>\cdots \beta _N>0\), \(n=[\alpha ]+1\) for \(\alpha \notin \mathbb {N}\) and \(\alpha =n\) for \(\alpha \in \mathbb {N}\), \(\beta _j<1\) for any \(j\in \{1,2,\ldots ,N\}\), D is the standard Riemann–Liouville derivative and \(f:[0,1]\times \mathbb {R}^{N+1}\rightarrow \mathbb {R}\) is a given function. By means of Schauder fixed point theorem and Banach contraction principle, an existence result and a unique result for the solution are obtained,respectively. As an application, some examples are presented to illustrate the main results.
  相似文献   

20.
We prove some sharp \(L^p-L^2\) estimates for joint spectral projections \(\pi _{\ell \ell '}\), with \(\ell ,\ell '\in {\mathbb {N}}\), \(\ell \ge \ell '\ge 0\), \(1\le p\le 2\), associated to the Laplace–Beltrami operator and to a suitably defined subLaplacian on the unit quaternionic sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号