首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
2.
We show that certain representations over fields with positive characteristic of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image. In particular, we obtain rigidity results for representations of the following groups: the special linear group over \({\mathbb {Z}}\), \({\mathrm{SL}}_k({\mathbb {Z}})\), the special automorphism group of a free group, \(\mathrm{SAut}(F_k)\), the mapping class group of a closed orientable surface, \(\mathrm{Mod}(\Sigma _g)\), and many other groups. In the case of characteristic zero, we show that low dimensional complex representations of groups having CAT\((0)\) fixed point property \(\mathrm{F}\mathcal {B}_{\widetilde{A}_n}\) have finite image if they always have compact closure.  相似文献   

3.
For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.  相似文献   

4.
A construction based on a \(4l \times 4l\) Hadamard matrix leads to a new family of optimal orthoplex packings in Grassmannian spaces \(G_{\mathbb {R}}(8l, 4l)\) and \(G_{\mathbb {C}}(4l, 2l)\). A related construction gives an optimal simplex packings in \(G_{\mathbb {R}}(8 l-1, 4 l - 1)\) and \(G_{\mathbb {R}}(8l-1, 4l)\) with the additional assumption of an \(8l \times 8l\) skew Hadamard matrix and a related 1-factorization of a complete graph. A construction of a maximal optimal simplex packings in \(G_{\mathbb {C}}(2l-1, l- 1)\) and \(G_{\mathbb {C}}(2l-1,l)\) is given.  相似文献   

5.
We consider the spherical complementary series of rank one Lie groups \(H_n={ SO }_0(n, 1; {\mathbb {F}})\) for \({\mathbb {F}}={\mathbb {R}}, {\mathbb {C}}, {\mathbb {H}}\). We prove that there exist finitely many discrete components in its restriction under the subgroup \(H_{n-1}={ SO }_0(n-1, 1; {\mathbb {F}})\). This is proved by imbedding the complementary series into analytic continuation of holomorphic discrete series of \(G_n=SU(n, 1)\), \(SU(n, 1)\times SU(n, 1)\) and SU(2n, 2) and by the branching of holomorphic representations under the corresponding subgroup \(G_{n-1}\).  相似文献   

6.
Consider a restriction of an irreducible finite dimensional holomorphic representation of \(\text {GL}(n + 1,\mathbb {C})\) to the subgroup \(\text {GL}(n,\mathbb {C})\). We write explicitly formulas for generators of the Lie algebra \(\mathfrak {g}\mathfrak {l}(n + 1)\) in the direct sum of representations of \(\text {GL}(n,\mathbb {C})\). Nontrivial generators act as differential-difference operators, the differential part has order n ??1, the difference part acts on the space of parameters (highest weights) of representations. We also formulate a conjecture about unitary principal series of \(\text {GL}(n,\mathbb {C})\).  相似文献   

7.
We present an efficient algorithm for the construction of a basis of \(H_{2}(\overline {\Omega },\partial {\Omega };\mathbb {Z})\) via the Poincaré-Lefschetz duality theorem. Denoting by g the first Betti number of \(\overline {\Omega }\) the idea is to find, first g different 1-boundaries of \(\overline {\Omega }\) with supports contained in ?Ω whose homology classes in \(\mathbb {R}^{3} \setminus {\Omega }\) form a basis of \(H_{1}(\mathbb {R}^{3} \setminus {\Omega };\mathbb {Z})\), and then to construct a set of 2-chains in \(\overline {\Omega }\) having these 1-boundaries as their boundaries. The Poincaré-Lefschetz duality theorem ensures that the relative homology classes of these 2-chains in \(\overline {\Omega }\) modulo ?Ω form a basis of \(H_{2}(\overline {\Omega },\partial {\Omega };\mathbb {Z})\). We devise a simple procedure for the construction of the required set of 1-boundaries of \(\overline {\Omega }\) that, combined with a fast algorithm for the construction of 2-chains with prescribed boundary, allows the efficient computation of a basis of \(H_{2}(\overline {\Omega },\partial {\Omega };\mathbb {Z})\) via this very natural approach. Some numerical experiments show the efficiency of the method and its performance comparing with other algorithms.  相似文献   

8.
We study homogeneous Lagrangian submanifolds in complex hyperbolic spaces. We show there exists a correspondence between compact homogeneous Lagrangian submanifolds in \(\mathbb {C}H^{n}\) and the ones in \(\mathbb {C}^n\), or equivalently, in \(\mathbb {C}P^{n-1}\). Furthermore, we construct and classify non-compact homogeneous Lagrangian submanifolds in \(\mathbb {C}H^n\) obtained by the actions of connected closed subgroups of the solvable part of the Iwasawa decomposition.  相似文献   

9.
10.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

11.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

12.
13.
If \( \mathcal{L} = \sum\limits_{j = 1}^m {X_j^2} + {X_0} \) is a Hörmander partial differential operator in \( {\mathbb{R}^N} \), we give sufficient conditions on the \( {X_{{j^{\text{S}}}}} \) for the existence of a Lie group structure \( \mathbb{G} = \left( {{\mathbb{R}^N},*} \right) \), not necessarily nilpotent, such that \( \mathcal{L} \) is left invariant on \( \mathbb{G} \). We also investigate the existence of a global fundamental solution Γ for \( \mathcal{L} \), providing results that ensure a suitable left-invariance property of Γ. Examples are given for operators \( \mathcal{L} \) to which our results apply: some are new; some have appeared in recent literature, usually quoted as Kolmogorov–Fokker–Planck-type operators. Nontrivial examples of homogeneous groups are also given.  相似文献   

14.
We prove weighted \({L^p}\)-Liouville theorems for a class of second-order hypoelliptic partial differential operators \({\mathcal{L}}\) on Lie groups \({\mathbb{G}}\) whose underlying manifold is \({n}\)-dimensional space. We show that a natural weight is the right-invariant measure \(\check{H}\) of \({\mathbb{G}}\). We also prove Liouville-type theorems for \({C^{2}}\) subsolutions in \({L^{p}(\mathbb{G},\check{H})}\). We provide examples of operators to which our results apply, jointly with an application to the uniqueness for the Cauchy problem for the evolution operator \({\mathcal{L}-\partial_{t}}\).  相似文献   

15.
We define Ptolemy coordinates for representations that are not necessarily boundary-unipotent. This gives rise to a new algorithm for computing the \({{\mathrm{SL}}}(2,{\mathbb {C}})\;A\)-polynomial, and more generally the \({{\mathrm{SL}}}(n,{\mathbb {C}})\;A\)-varieties. We also give a formula for the Dehn invariant of an \({{\mathrm{SL}}}(n,{\mathbb {C}})\)-representation.  相似文献   

16.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

17.
In this paper we classify magnetic trajectories γ in \({{\mathbb{R}}^{2N+1}}\) endowed with a canonical quasi-Sasakian structure, corresponding to a magnetic field proportional to the fundamental 2-form. We prove that they are helices of order 5 and we show that there exists a totally geodesic \({{\mathbb{R}}^5}\) in \({\mathbb{R}^{2N+1}}\) such that γ lies in \({{\mathbb{R}}^5}\). Moreover, the quasi-Sasakian structure of \({{\mathbb{R}}^5}\) is that induced from the ambient manifold.  相似文献   

18.
Let \(\mathcal{C}\) be a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive code of length \(n > 3\). We prove that if the binary Gray image of \(\mathcal{C}\) is a 1-perfect nonlinear code, then \(\mathcal{C}\) cannot be a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic code except for one case of length \(n=15\). Moreover, we give a parity check matrix for this cyclic code. Adding an even parity check coordinate to a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive 1-perfect code gives a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive extended 1-perfect code. We also prove that such a code cannot be \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic.  相似文献   

19.
Some effective expression is obtained for the elements of an admissible set \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) as template sets. We prove the Σ-reducibility of \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) to \(\mathbb{H}\mathbb{F}(\mathfrak{M})\) for each recursively saturated model \(\mathfrak{M}\) of a regular theory, give a criterion for uniformization in \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) for each recursively saturated model \(\mathfrak{M}\), and establish uniformization in \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{N})\) and \(\mathbb{H}\mathbb{Y}\mathbb{P}(\Re ')\), where \(\mathfrak{N}\) and \(\Re '\) are recursively saturated models of arithmetic and real closed fields. We also prove the absence of uniformization in \(\mathbb{H}\mathbb{F}(\mathfrak{M})\) and \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) for each countably saturated model \(\mathfrak{M}\) of an uncountably categorical theory, and give an example of this type of theory with definable Skolem functions. Furthermore, some example is given of a model of a regular theory with Σ-definable Skolem functions, but lacking definable Skolem functions in every extension by finitely many constants.  相似文献   

20.
We prove that the class of \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear codes is exactly the class of \(\mathbb {Z}_2\)-linear codes with automorphism group of even order. Using this characterization, we give examples of known codes, e.g. perfect codes, which have a nontrivial \(\mathbb {Z}_2\mathbb {Z}_2[u]\) structure. Moreover, we exhibit some examples of \(\mathbb {Z}_2\)-linear codes which are not \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear. Also, we state that the duality of \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear codes is the same as the duality of \(\mathbb {Z}_2\)-linear codes. Finally, we prove that the class of \(\mathbb {Z}_2\mathbb {Z}_4\)-linear codes which are also \(\mathbb {Z}_2\)-linear is strictly contained in the class of \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号