首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed.  相似文献   

2.
《Chemical physics》2005,309(1):41-47
The formation of Pd dimers on the surface of MgO has been studied by means of density functional theory (DFT) cluster model calculations. The following surface sites have been considered: regular five-coordinated anions at the (1 0 0) terraces, monoatomic steps, OH groups, and neutral vacancies (F centers). We discuss the energy balance of forming a dimer at a given site with respect to two isolated Pd atoms, one adsorbed at the defect and one on a regular terrace site. We found that all the defects considered lead to an energy gain when the dimer is formed, suggesting that they can be involved in nucleation and growth processes of metal clusters on the MgO surface. The dimerization energy is moderate for steps (≈0.8 eV), large for OH groups (≈1.3 eV) and rather small (<0.5 eV) for F centers.  相似文献   

3.
We present DFT calculations for adsorption of the first row of transition metal atoms on a MgO(1 0 0) surface and on a surface exhibiting defects. Some atoms exhibit a high adsorption energy on the defect (e.g. Co, Ni and Cu), but others (Ca, Sc) rather adsorb on a clean surface and another set is indifferent to the presence of defect. The adsorption becomes energetically unfavorable when the σ anti-bonding orbitals become populated; this is worse on a defective surface than on a terrace. The π back-donation to the surface contributes to favor the adsorption on the center.  相似文献   

4.
The electronic and chemical reduction properties of the Ce0.75Zr0.25O2(1 1 0) surface are presented based on DFT + U calculations, i.e. density functional theory with the inclusion of on-site Coulomb interaction. Experimental studies in the literature have shown that redox activity and thermal stability of ceria are significantly enhanced by the presence of zirconia dopants. In the present theoretical study it is found that mixing zirconia into ceria leads to important structural and chemical consequences such as non-equivalent O atoms at the surface, lower reduction energy and larger surface relaxation. The electronic mechanisms behind these modifications are analysed.  相似文献   

5.
Calculations on electronic structure of the perinaphthenyl radical and phenalenyl derivative radicals responsible for the composition of the ESR spectrum of marine diesel under heating were performed to obtain support for the experimental ESR results. The parameters calculated were the hyperfine coupling constants (A), which were then used for comparison with the experimental data. The energy‐minimized structures were obtained using the density functional theory method. In all cases, the symmetry system was taken into account in theoretical calculations. The differences between experimental and theoretical values were below 7% for nearest hydrogens in molecules, named hyperfine coupling constant A (first neighbors) and 18% for farthest hydrogens atoms named hyperfine coupling constants A′ (second neighbors), for all structures analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been performed to investigate substituent effects on coupling constants for borazine and selected substituted borazines. For molecules in which F atoms are not bonded to adjacent atoms in the ring, F substitution increases the one-bond (11)B-(15)N coupling constants involving the atom at which substitution occurs but leaves the remaining one-bond B-N coupling constants essentially unchanged. For these molecules, the magnitudes of one-bond B-N coupling constants are only slightly dependent on the number of F atoms present. Fluorine substitution at adjacent B and N atoms in the borazine ring further increases the one-bond B-N coupling constant involving the substituted atoms and has the same effect on the other one-bond coupling constants as observed for corresponding molecules in which substitution occurs at alternate sites. In contrast to the effect of F substitution, substitution of Li at either N or B decreases one-bond B-N coupling constants relative to borazine. The effects of F and Li substitution on one-bond B-N coupling constants for borazine are similar to F and Li substitution effects on (13)C-(13)C coupling constants for benzene.  相似文献   

7.
Using CI embedding method, we have studied the adsorption of CO on MgO(1 0 0). The MgO(1 0 0) substrate is described by a Mg9O9 (3 × 3 × 2) core cluster, embedded in ionic (Mg2+/O2−) core potentials. The adsorption energy is calculated to be 0.11 eV at the CI level with a blue shift of 19 cm−1 for CO stretching on MgO(1 0 0). The dispersion accounts only 35% of the total binding energy of CO on MgO(1 0 0). The CO/MgO(1 0 0) interaction is weak and mainly of the van der Waals type with only slight chemical bonding characters.  相似文献   

8.
Density functional calculations yield energy barriers for H abstraction by oxygen radical sites in Li‐doped MgO that are much smaller (12±6 kJ mol?1) than the barriers inferred from different experimental studies (80–160 kJ mol?1). This raises further doubts that the Li+O.? site is the active site as postulated by Lunsford. From temperature‐programmed oxidative coupling reactions of methane (OCM), we conclude that the same sites are responsible for the activation of CH4 on both Li‐doped MgO and pure MgO catalysts. For a MgO catalyst prepared by sol–gel synthesis, the activity proved to be very different in the initial phase of the OCM reaction and in the steady state. This was accompanied by substantial morphological changes and restructuring of the terminations as transmission electron microscopy revealed. Further calculations on cluster models showed that CH4 binds heterolytically on Mg2+O2? sites at steps and corners, and that the homolytic release of methyl radicals into the gas phase will happen only in the presence of O2.  相似文献   

9.
An optimized procedure for the selective dimetalation of [V(eta (6)-C 6H 6) 2] by BuLi/tmeda allowed for the isolation and characterization of [V(eta (6)-C 6H 5Li) 2].tmeda. X-ray diffraction of its thf solvate [V(eta (6)-C 6H 5Li) 2].(thf) 7 revealed an unsymmetrical, dimeric composition in the solid state, in which both subunits are connected by three bridging lithium atoms. Treatment with several element dihalides facilitated the isolation of [ n]vanadoarenophanes ( n = 1, 2) with boron and silicon in the bridging positions. In agreement with the number and covalent radii of the bridging elements, these derivatives exhibit molecular ring strain to a greater or lesser extent. The B-B bond of the [2]bora species [V(eta (6)-C 6H 5) 2B 2(NMe 2) 2] was readily cleaved by [Pt(PEt 3) 3] to afford the corresponding oxidative addition product. Subsequently, [V(eta (6)-C 6H 5) 2B 2(NMe 2) 2] was employed as a diborane(4) precursor in the diboration of 2-butyne under stoichiometric, homogeneous, and heterogeneous catalysis conditions. This transformation is facilitated by the reduction of molecular ring strain, which was confirmed by a decrease of the tilt angle alpha observed in the corresponding solid-state structures. EPR spectroscopy was used to probe the electronic structure of strained [ n]vanadoarenophanes and revealed an obvious correlation between the degree of molecular distortion and the observed hyperfine coupling constant a iso. State-of-the-art DFT calculations were able to reproduce the measured isotropic vanadium hyperfine couplings and the coupling anisotropies. The calculations confirmed the decrease of the absolute isotropic hyperfine couplings with increasing tilt angle. Closer analysis showed that this is mainly due to increased positive contributions to the spin density at the vanadium nucleus from the spin polarization of doubly occupied valence orbitals of vanadium-ligand sigma-antibonding character. The latter are destabilized and thus made more polarizable in the bent structures.  相似文献   

10.
S. Voss  M. Fonin  F. Zinser  M. Burgert  U. Groth  U. Rüdiger 《Polyhedron》2009,28(9-10):1606-1609
The possibility to use the Au(1 0 0)/Fe(1 0 0)/MgO(1 0 0) system as a substrate for future spin-polarized transport measurements on Mn12 single molecule magnets has been investigated by means of scanning tunneling microscopy and X-ray photoelectron spectroscopy at room temperature. In particular, the stability of the iron layer during a wet chemical preparation of Mn12 monolayers was studied. The results demonstrate that Mn12 can be deposited on Au(1 0 0)/Fe(1 0 0)/MgO(1 0 0) while preserving the metallic nature of the ferromagnetic iron layer which is required as a possible source of spin-polarized electrons in future studies.  相似文献   

11.
We have studied the interaction of K atoms with the surface of polycrystalline alkaline-earth metal oxides (MgO, CaO, SrO) by means of CW- and Pulsed-EPR, UV-Vis-NIR spectroscopies and DFT cluster model calculations. The K adsorption site is proposed to be an anionic reverse corner formed at the intersection of two steps, where K binds by more than 1 eV, resulting in thermally stable species up to about 400 K. The bonding has small covalent and large polarization contributions, and the K atom remains neutral, with one unpaired electron in the valence shell. The interaction results in strong modifications of the K electronic wave function which are directly reflected by the hyperfine coupling constant, (K)a(iso). This is found to be a very efficient "probe" to measure the degree of metal-oxide interaction which directly depends on the substrate basicity. These results provide an original and general model of the early stages of the metal-support interaction in the case of ionic oxides.  相似文献   

12.
The vibrational spectroscopy of a glycine molecule adsorbed on a silicon surface is studied computationally, using different clusters as models for the surface. Harmonic frequencies are computed using density functional theory (DFT) with the B3LYP functional. Anharmonic frequency calculations are carried out using vibrational self-consistent field (VSCF) algorithms on an improved PM3 potential energy surface. The results are compared with experiments on Glycine@Si(1 0 0)-2 × 1.

The main findings are: (1) Agreement of the computed frequencies with experiment improves with cluster size. (2) The anharmonic calculations are generally in better agreement with experiment than the harmonic ones. The improvements due to anharmonicity are most significant for hydrogenic stretching. (3) An important part of the anharmonic effects is due to anharmonic coupling between different normal modes of the system. (4) The anharmonic coupling between glycine vibrational modes is much larger than the anharmonic coupling between glycine and “phonon” (cluster) modes.

Implications of the results for surface vibrational spectroscopy are discussed.  相似文献   


13.
The Li/MgO catalyst and nanocatalyst were prepared by the incipient wetness impregnation and sol-gel method, respectively. The catalytic performance of the Li/MgO catalyst and nanocatalyst on oxidative coupling of methane was compared. The catalysts prepared in two ways were characterized by X-ray powder diffraction, Brunauer-Emmett-Teller surface and transmission electron microscope. The catalyst was tested at temperature of 973-1073 K with constant total pressure of 101 kPa. Experimental results showed that Li/MgO nanocatalyst in the oxidative coupling of methane would result in higher conversion of methane, higher selectivity, and higher yield of main products (ethane and ethylene) compared to ordinary catalyst. The results show the improved influence of nanoscale Li/MgO catalyst performance on oxidative coupling of methane.  相似文献   

14.
The activation energy of displacement of Mg atoms through channels of B25C4Mg1.42 crystals is estimated using quantum chemical calculations (DFT (B3LYP potential), RHF, and UHF methods, 3-21G basis set) of the element of the structure modeling the channel and location of Mg atoms in it. The changes in the activation energy at the replacement of Mg atoms by Na and Li atoms were estimated. The greatest decreasing in the activation energy was detected for Li atoms. The obtained results can be regarded as a theoretical background for development of conducting systems based on B25C4Mg1.42 crystals.  相似文献   

15.
On the basis of embedded cluster calculations, we propose a new model for the structure of paramagnetic color centers at the MgO surface usually denoted as F(S)(H)(+) (an electron trapped near an adsorbed proton). These centers are produced by exposing the surface of polycrystalline MgO to H(2) followed by UV irradiation. We demonstrate that properties of H atom absorbed at surface sites such as step edges (MgO(step)) and reverse corner sites (MgO(RC)), formed at the intersection of two step edges, are compatible with a number of features observed for F(S)(H)(+). Our calculations suggest that (i) H(2) dissociates at the reverse corner site heterolytically and that there is no barrier for this exothermic reaction; (ii) the calculated vibrations of the resulting MgO(RC)(H(+))(H(-)) complex are fully consistent with the measured ones; (iii) desorption of a neutral H atom from the diamagnetic precursor requires UV light and leads to the formation of stable neutral paramagnetic centers at the surface, MgO(step)(H(+))(e(-))(trapped) and MgO(RC)(H(+))(e(-))(trapped). The computed isotropic hyperfine coupling constants and optical transitions of these centers are in broad agreement with the existing experimental data. We argue that these centers, which do not belong to the class of "oxygen vacancies", are two of the many possible forms of the F(S)(H)(+) defect center.  相似文献   

16.
The (7)Li NMR isotropic shift for olivine LiMPO(4) (M = Fe, Mn, Co, Ni) is assigned to hyperfine coupling between the (7)Li nucleus and the transition metal unpaired electrons on the basis of the Curie-Weiss temperature dependence of the shift. The hyperfine shift arises from a linear combination of Li-O-M through-bond interactions wherein the unpaired A' electrons contribute a negative shift and the unpaired A' ' electrons contribute a positive shift. The hyperfine coupling constant is determined for each composition.  相似文献   

17.
Structural sites occupied by lithium in the rhombohedral LiTi2-xZrx(PO4)3 series (0 < or = x < or = 2) have been investigated by 7Li NMR spectroscopy. At room temperature, the XRD patterns of the end-members of the series display rhombohedral R3c symmetry in LiTi2(PO4)3 and triclinic C in LiZr2(PO4)3. In the first compound, Li ions occupy M1 sites; however, in the second one Li occupy intermediate M1/2 sites. As the temperature increases, a first-order displacive transformation is detected in the triclinic phase, but a second-order/disorder transition is detected in the rhombohedral phase. From the temperature dependence of the 7Li NMR quadrupole constant (CQ) of the two compounds, the evolution of M1 and M1/2 sites occupancy in the Nasicon conduction network has been deduced. At high temperatures, analyzed phases tend toward a disordered rhombohedral phase, in which both M1 and M1/2 sites are equally populated and in which lithium mobility is favored by the existence of vacant M1 sites. According to this study, this phase can also be obtained by substituting Ti by Zr in the LiTi2-xZrx(PO4)3 series.  相似文献   

18.
Low-energy state-changing cross sections involving the ground state of He atoms and ground states of Li atoms are calculated using the semiclassical impact parameter close-coupling method based on a molecular states expansion to represent the electronic wave function. The plane wave translation factor is used considering a classical trajectory for the motion of the heavy particles. We approximate this many electrons system to a one-electron problem by using the l-dependent pseudopotential technique. In order to obtain cross sections, we retain nine molecular states including six and three states in our close coupling calculations, but, in the structure calculations, we have included 16 states (ten and six states) so the excitation of 5s levels of the target Li atoms is possible. Our cross sections for Li (2p) excitation agree well with previous theoretical and available experimental results.  相似文献   

19.
The J = 1-0 transitions of (12)CH(+), (13)CH(+), and (12)CD(+) in the ground X(1)Σ(+) state have been unambiguously identified by using an extended negative glow discharge as an ion source. Unexpectedly large Zeeman splittings have been observed, and the (13)CH(+) line exhibits nuclear spin-rotation hyperfine splitting in addition to the Zeeman effect. The nuclear spin-rotation coupling constant was determined to be 1.087(50) MHz for the (13)C species. The rotational g-factor is found to be -7.65(29), in terms of the nuclear magneton for the J = 1 and v = 0 state, more than an order of magnitude larger than values for typical diamagnetic closed shell molecules. These larger than usual magnetic interactions for a (1)Σ molecule are caused by the large rotational energy and relatively small excitation energy of the excited A(1)Π state. The effective g-factor and the spin-rotation coupling constant obtained by ab initio calculations agree very well with the experimentally determined values.  相似文献   

20.
Density functional theory calculations (UB3LYP/EPR‐III) for a series of radicals and radical ions were performed to check the internal consistency of the method and its implications to the theoretical concepts of electron paramagnetic resonance such as π–σ spin polarization, hyperconjugation and phenyl hyperconjugation. In the second part, experimental data for seven radicals (43 hyperfine coupling constants) are compared with calculations, yielding a correlation of r2 = 0.97. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号