首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
We show that the dissociation probability of O2 on the reconstructed, Au111-herringbone surface is dramatically increased by the presence of some atomic oxygen on the surface. Specifically, at 400 K the dissociation probability of O2 on oxygen precovered Au111 is on the order of 10(-3), whereas there is no measurable dissociation on clean Au111, establishing an upper bound for the dissociation probability of 10(-6). Atomic oxygen was deposited on the clean reconstructed Au111-herringbone surface using electron bombardment of condensed NO2 at 100 K. The dissociation probability for dioxygen was measured by exposing the surface to 18O2. Temperature programmed desorption (TPD) was used to quantify the amount of oxygen dissociation and to study the stability of the oxygen in all cases. Oxygen desorbs as O2 in a peak centered at 550 K with pseudo-first-order kinetics; i.e., the desorption peak does not shift with coverage. Our interpretation is that the coverage dependence of the activation energy for dissociation (deltaE(dis)) and/or preexponential factor (nu(d)) may be responsible for the unusual desorption kinetics, implying a possible energy barrier for O2 dissociation on Au111. These results are discussed in the context of Au oxidation chemistry and the relationship to supported Au nanoparticles.  相似文献   

2.
Water-oxygen interactions and CO oxidation by water on the oxygen-precovered Au(111) surface were studied by using molecular beam scattering techniques, temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. Water thermally desorbs from the clean Au(111) surface with a peak temperature of approximately 155 K; however, on a surface with preadsorbed atomic oxygen, a second water desorption peak appears at approximately 175 K. DFT calculations suggest that hydroxyl formation and recombination are responsible for this higher temperature desorption feature. TPD spectra support this interpretation by showing oxygen scrambling between water and adsorbed oxygen adatoms upon heating the surface. In further support of these experimental findings, DFT calculations indicate rapid diffusion of surface hydroxyl groups at temperatures as low as 75 K. Regarding the oxidation of carbon monoxide, if a C (16)O beam impinges on a Au(111) surface covered with both atomic oxygen ( (16)O) and isotopically labeled water (H 2 (18)O), both C (16)O (16)O and C (16)O (18)O are produced, even at surface temperatures as low as 77 K. Similar experiments performed by impinging a C (16)O beam on a Au(111) surface covered with isotopic oxygen ( (18)O) and deuterated water (D 2 (16)O) also produce both C (16)O (16)O and C (16)O (18)O but less than that produced by using (16)O and H 2 (18)O. These results unambiguously show the direct involvement and promoting role of water in CO oxidation on oxygen-covered Au(111) at low temperatures. On the basis of our experimental results and DFT calculations, we propose that water dissociates to form hydroxyls (OH and OD), and these hydroxyls react with CO to produce CO 2. Differences in water-oxygen interactions and oxygen scrambling were observed between (18)O/H 2 (16)O and (18)O/D 2 (16)O, the latter producing less scrambling. Similar differences were also observed in water reactivity toward CO oxidation, in which less CO 2 was produced with (16)O/D 2 (16)O than with (16)O/H 2 (16)O. These differences are likely due to primary kinetic isotope effects due to the differences in O-H and O-D bond energies.  相似文献   

3.
We demonstrate ammonia oxidation promoted by an atomic oxygen precovered Au(111) surface. The selectivity of the catalytic oxidation of ammonia to NO or N2 on Au(111) is tunable by the atomic oxygen coverage. We propose that N2 and NO are produced via the recombination reactions of Nad + Nad and Nad + Oad.  相似文献   

4.
We demonstrate that intermolecular interactions, controlled by both oxygen and styrene coverage, alter reaction selectivity for styrene oxidation on oxygen‐covered Au(111). Several partial oxidation products are formed—styrene oxide, acetophenone, benzoic acid, benzeneacetic acid, and phenylketene—in competition with combustion. The maximum ratio of the yields of styrene oxide to the total CO2 produced is obtained for the maximum styrene coverage for the first two layers (0.28 ML) adsorbed on Au(111) precovered with 0.2 ML of O. Furthermore, our reactivity and infrared studies support a mechanism whereby styrene oxidation proceeds via two oxametallacycle intermediates which, under oxygen‐lean conditions, lead to the formation of styrene oxide, acetophenone, and phenylketene. Benzoate, identified on the basis of infrared reflection absorption spectroscopy, is converted into benzoic acid during temperature‐programmed reaction. These results demonstrate the ability to tune the epoxidation selectivity using reactant coverages and provide important mechanistic insight into styrene oxidation reactions.  相似文献   

5.
We present evidence for the formation of transient hydroxyls from the reaction of water with atomic oxygen on Au(111) and investigate the effect of adsorbed oxygen on the hydrogen bonding of water. Water is evolved in peaks at 175 and 195 K in temperature programed reaction experiments following adsorption of water on oxygen-covered Au(111). The peak at 175 K is ascribed to sublimation of multilayers of water, whereas the peak at 195 K is associated with oxygen-stabilized water or a water-hydroxyl surface complex. Infrared reflection absorption spectra are consistent with the presence of molecular water over the entire range of coverages studied, indicating that isolated stable hydroxyls are not formed. Isotopic exchange of adsorbed (16)O with H(2)(18)O following adsorption and subsequent temperature programed reaction, however, indicates that transient OH species are formed. The extent of oxygen exchange was considerable--up to 70%. The degree of oxygen exchange depends on the initial coverage of oxygen, the surface temperature when preparing oxygen adatoms, and the H(2)(18)O coverage. The hydroxyls are short-lived, forming and disproportionating multiple times before water desorption during temperature programed reaction. It was also found that chemisorbed oxygen is critical in the formation of hydroxyls and stabilizing water, whereas gold oxide does not contribute to these effects. These results identify transient hydroxyls as species that could play a critical role in oxidative chemical reactions on gold, especially in ambient water vapor. The crystallinity of adsorbed water also depended on the degree of surface ordering and chemical modification based on scanning tunneling microscopy and infrared spectra. These results demonstrate that oxidation of interfaces has a major impact on their interaction with water.  相似文献   

6.
The Au(111) surface was populated with atomic oxygen [16O] followed by oxygen-labeled water [H218O] at surface temperatures as low as 77 K. When a CO beam was impinged on this surface, both [C16O16O] and [C16O18O] were produced. The results strongly suggest the direct involvement and promoting role of water in CO oxidation on oxygen covered Au(111) at low temperatures.  相似文献   

7.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

8.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

9.
The adsorption of water on a Ni(111) single crystal surface, clean as well as precovered with oxygen, has been investigated with thermal desorption spectroscopy (TDS) and measurements of the adsorption-desorption equilibrium combined with XPS (X-ray photoelectron spectroscopy). The measurements have been carried out with water pressures up to 10–5 mbar on surfaces, which have been either clean or precovered with oxygen. On the clean Ni(111) surface the first adsorbate layer with a maximum coverage of 0.42 ML (monolayers) has a desorption energy of 52 kJ/mol and a preexponential factor of desorption of 1016s–1. A second water layer adsorbs with the desorption energy of the ice multilayer but with first order kinetics. On Ni(111) precovered with chemisorbed oxygen an additional state of molecular, more strongly bound water is found, but no dissociation. For higher oxygen precoverages where NiO islands are formed on the surface, also the water dissociation product OH is found adsorbed. On a sample covered with a closed NiO layer, adsorbed OH and molecular water in an energetically not well-defined state are found. High doses of water on oxygen-precovered Ni(111) induce a slow surface modification leading to water dissociation.  相似文献   

10.
High-resolution x-ray photoelectron spectroscopy has been used to study the kinetics of the CO oxidation reaction on a Pt(111) surface in situ. The study focuses on the interaction of a preadsorbed p(2x2) layer of atomic oxygen with CO dosed using a supersonic molecular beam. Measurements of O 1s and C 1s spectra at 120 K show that CO adsorbs on the oxygen precovered substrate, but no reaction occurs. A maximum CO coverage of 0.23 ML (monolayer) is observed, with CO exclusively bound on on-top sites. In accordance with the literature, bridge sites are blocked by the presence of atomic oxygen. The reaction of CO with preadsorbed O to CO(2) is studied isothermally in a temperature range between 275 and 305 K. The reaction rate initially increases with CO pressure, but saturates at 9x10(-7) mbar. The data indicate that a certain amount of disordered oxygen within the p(2x2) layer acts as a starting point of the reaction and for a given temperature reacts with a higher rate than O in the well-ordered oxygen p(2x2) phase. For the reaction of CO with this ordered phase, the results confirm the assumption of a reaction mechanism, which is restricted to the edges of compact oxygen islands. The activation energy of the reaction is determined to (0.53+/-0.04) eV, with a prefactor of 4.7x10(6+/-0.7) s(-1).  相似文献   

11.
In this work we have studied the steady-state reaction of molecular and atomic hydrogen with oxygen on a Pd(111) surface at a low total pressure (<10(-7) mbar) and at sample temperatures ranging from 100 to 1100 K. Characteristic features of the water formation rate Phi(pH2; pO2; TPd) are presented and discussed, including effects that are due to the use of gas-phase atomic hydrogen for exposure. Optimum impingement ratios (OIR) for hydrogen and oxygen for water formation and their dependence on the sample temperature have been determined. The occurring shift in the OIR could be ascribed to the temperature dependence of the sticking coefficients for hydrogen (SH2) and oxygen (SO2) on Pd(111). Using gas-phase atomic hydrogen for water formation leads to an increase of the OIR, suggesting that hydrogen abstraction via hot-atom reactions competes with H2O formation. The velocity distributions of the desorbing water molecules formed on the Pd(111) surface have been measured by time-of-flight spectroscopy under various conditions, using either gas-phase H atoms or molecular H2 as reactants. In all cases, the desorbing water flux could be represented by a Maxwellian distribution corresponding to the surface temperature, thus giving direct evidence for a Langmuir-Hinshelwood mechanism for water formation on Pd(111).  相似文献   

12.
The reaction mechanism of water formation from H2 and O2 was studied over a series of silica-supported gold nanoparticles. The metal particle size distributions were estimated with TEM and XRD measurements. Hydrogen and oxygen adsorption calorimetry was used to probe the nature and properties of surface species formed by these molecules. DFT calculations with Au5, Au13, and Au55 clusters and with Au(111) and Au(211) periodic slabs were performed to estimate the thermodynamic stability and reactivity of surface species. Kinetic measurements were performed by varying the reactant partial pressures at 433 K and by varying the temperature from 383 to 483 K at 2.5 kPa of O2 and 5 kPa of H2. The measured apparent power law kinetic parameters were similar for all catalysts in this study: hydrogen order of 0.7-0.8, oxygen order of 0.1-0.2, and activation energy of 37-41 kJ/mol. Catalysts with Si-MFI (Silicalite-1) and Ti-MFI (TS-1 with 1 wt % Ti) exhibited similar activities. The activities of these catalysts with the MFI crystalline supports were 60-70 times higher than that of an analogous catalyst with an amorphous silica support. Water addition in the inlet stream at 3 vol % did not affect the reaction rates. The mechanism of water formation over gold is proposed to proceed through the formation of OOH and H2O2 intermediates. A rate expression derived based on this mechanism accurately describes the experimental kinetic data. The higher activity of the MFI-supported catalysts is attributed to a higher concentration of gold particles comparable in size to Au13, which can fit inside MFI pores. DFT results suggest that such intermediate-size gold particles are most reactive toward water formation. Smaller particles are proposed to be less reactive due to the instability of the OOH intermediate whereas larger particles are less reactive due to the instability of adsorbed oxygen.  相似文献   

13.
Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperatureprogrammed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsorption and stabilizes the adsorbed CO2(a), and the stabilization effect also depends on the CO2(a) coverage and involved Au sites. CO2(a) desorption is the rate-limiting step for the CO+O(a) reaction to produce CO2 on Au(997) at 105 K and exhibits complex behaviors, including the desorption of CO2(a) upon CO exposures at 105 K and the desorption of O(a)-stabilized CO2(a) at elevated temperatures. The desorption of CO2(a) from the surface upon CO exposures at 105 K to produce gaseous CO2 depends on the surface reaction extent and involves the reaction heat-driven CO2(a) desorption channel. CO+O(a) reaction proceeds more easily with weakly-bound oxygen adatoms at the (111) terraces than strongly-bound oxygen adatoms at the (111) steps. These results reveal complex rate-limiting CO2(a) desorption behaviors during CO+O(a) reaction on Au surfaces at low temperatures which provide novel information on the fundamental understanding of Au catalysis.  相似文献   

14.
FTIR spectroscopy combined with isotope labeling experiments and quantum chemical calculations is used to investigate the adsorption of carbon dioxide on hydroxylated metal oxide surfaces. In particular, transmission FTIR spectra following CO2 adsorption on hydroxylated nanoparticulate Fe2O3, alpha-Al2O3, and gamma-Al2O3 particles at 296 K are reported. As expected, reaction of CO2 with these surfaces results in the formation of adsorbed bicarbonate and carbonate. In this study, the vibrational spectrum of the bicarbonate product is analyzed in detail through the use of isotope labeling experiments and quantum chemical calculations. The experimental and calculated vibrational frequencies of adsorbed HC16O3-, DC16O3-, HC18O3-, HC16O18O2-, and HC18O16O2- indicate that bicarbonate bonds to the surface in a bridged structure. There is some evidence from the mixed isotope experiments that following initial nucleophilic attack of OH, the formation of the final bicarbonate structure involves a proton transfer. On the basis of energetic considerations, the proton transfer mechanism most likely occurs through an intermolecular process involving either coadsorbed hydroxyl groups and/or carbonate.  相似文献   

15.
The mechanism of the electroreduction of oxygen on bare and Bi-submonolayer-modified Au(111) surfaces is examined using surface enhanced Raman scattering (SERS) measurements along with detailed density functional theory (DFT) calculations. The spectroscopy reveals the presence of superoxide-level species at potentials where oxygen is reduced. These species are not present in solutions absent either oxygen or Bi at these potentials. The spectroscopy also reveals the presence of Bi-OH species which are associated with peroxide reduction. Detailed calculations show oxygen associates much more strongly with Bi in the (2 x 2) configuration on Au(111) relative to the bare Au surface. Additionally, the O-O bond is elongated following O2 association, which follows as a consequence of Bi-O bond formation and partial oxidation of the Bi adatom. These results show for the first time that the four-electron electroreduction of oxygen electroreduction occurs via a series pathway on the Bi-modified surface in acid solution.  相似文献   

16.
基于密度泛函理论(DFT)计算研究了O3在完整和具有氧空位的CuO(111)表面吸附的吸附位、吸附结构、吸附能和电子转移情况,比较了O3在完整表面和具有氧空位的表面分解的路径和能垒,分析了氧空位和表面吸附氧的生成机理。结果表明,在完整CuO表面,O3分子通过化学吸附或物理吸附表面结合,吸附能最高为-1.22eV(构型bri(2))。O3在具有氧空位的CuO表面均为化学吸附,吸附能最高为-2.95eV(构型ovbri(3)),显著高于完整表面的吸附能。O3吸附后,Cu吸附位的电荷密度减小,O3中的O原子附近的电荷密度显著增强,电荷从CuO表面转移到O3,并形成Cu-O离子键。O3分解后形成了超氧物种,提高了表面的氧化活性。在完整表面,以构型bri(2)为起始构型的路径反应能垒最低,为0.52eV;O2*在完整表面的脱附所需要的最低能量为0.42eV,形成氧空位的O2*脱附能为2.06eV。在具有氧空位的表面,O3分解的反应能垒为0.30eV(构型ovbri(1))和0.12eV(构型ovbri(3)),均低于完整表面的反应能垒;分解形成的O2*的最低脱附能也低于完整表面,为0.27eV。可见,氧空位的形成提高了吸附能,降低了反应能垒,使O3分子更容易吸附在CuO表面,并加快了O3的催化分解。  相似文献   

17.
The surface structure effect on the oxidation of Cu has been investigated by performing ambient-pressure X-ray photoelectron spectroscopy (APXPS) on Cu(111) and Cu(110) surfaces under oxygen pressures ranging from 10−8 to 1 mbar and temperatures from 300 to 750 K. The APXPS results show a subsequential phase transition from chemisorbed O/Cu overlayer to Cu2O and then to CuO on both surfaces. For a given temperature, the oxygen pressure needed to induce initial formation of Cu2O on Cu(110) is about two orders of magnitude greater than that on Cu(111), which is in contrast with the facile formation of O/Cu overlayer on clean Cu(110). The depth profile measurements during the initial stage of Cu2O formation indicate the distinct growth modes of Cu2O on the two surface orientations. We attribute these prominent effects of surface structure to the disparities in the kinetic processes, such as the dissociation and surface/bulk diffusion over O/Cu overlayers. Our findings provide new insights into the kinetics-controlled process of Cu oxidation by oxygen.  相似文献   

18.
Exposing water to a (2 x 2)-O precovered Pt(111) surface at 100 K and subsequently annealing at 155 K led to the formation of a well-ordered (square root 3 x square root 3)R30 degrees overlayer. The structure of this overlayer is determined by DFT and full dynamical LEED calculations. There are two O containing groups per (square root 3 x square root 3)R30 degrees unit cell and both occupy near on-top positions with a Pt-O bond length of (2.11 +/- 0.04) A. DFT calculations determined the hydrogen positions of the OH species and clearly indicate hydrogen bonds between the neighboring adsorbed OH groups whose interaction is mainly of electrostatic nature. A theoretical comparison with H(2)O shows the hybridization of OH on Pt(111) to be sp(3).  相似文献   

19.
The surface species formed from the reaction of CO+H(2)O and CO+O(2) and decomposition of HCOOH on Au incorporated into H-mordenite zeolite have been studied by means of in situ FTIR spectroscopy. On H-mordenite, a bidentate formate species (2912, 1536, and 1390 cm(-1)) is produced upon exposure to the CO+H(2)O gas mixture at 323 K, as well as different carbonate-like species (1956, 1852, 1705, and 1360 cm(-1)). The latter species was extensively formed in a short time and was responsible for hindering the CO(2) adsorbed species. However, Au/H-mordenite presented different vibration modes of formate species with a high emphasis on the monodentate ones (2950, 2916, 2896, 1690, and 1340 cm(-1)). The HCOOH adsorption on Au/H-mordenite showed two bands at 1622 and 1590 cm(-1) of the nu(as)(OCO) species, suggesting the formation of two types of formate species. The decomposition rate of the formate species formed on Au moieties was faster than that formed on H-mordenite. This was consistent with the calculated activation energies of CO(2) formation that showed a lower value (40.1 kJ/mol) on the former sample than on the latter one (63.3 kJ/mol). A dehydrogenation mechanism is proposed (HCOOH-->H(2)+CO(2)) for the decomposition of HCOOH on the Au/H-mordenite catalyst. On the other hand, the Au/H-mordenite catalyst activated the CO oxidation reaction. This reaction proceeded mainly through the formation of carboxylate species at first, which tended to obviate with time, preferring the formate species. The latter species resulted from the interaction of CO with OH stretching of the zeolite assisted by the presence of gas phase O(2). The formate species is further decomposed with time to carbonate species. Copyright 2000 Academic Press.  相似文献   

20.
The adsorption of CO and its reaction with oxygen were investigated using a combination of in situ Fourier transform infrared spectroscopy, step response measurements in a microreactor, (18)O isotopic labeling, and X-ray absorption near edge structure spectroscopy. An as-prepared sample in which Au is present as a surface oxyhydroxy complex does not adsorb CO. On an activated sample in which only metallic Au is detected, 0.18 +/- 0.03 mol CO/(mol Au) are adsorbed on Au at -60 degrees C, which shows an IR band at 2090 cm(-1). When oxygen is present in the gas phase, this species reacts with a turnover rate of 1.4 +/- 0.2 mol CO(mol Au min)(-1), which is close to the steady-state turnover rate. In contrast, there is a very small quantity of adsorbed oxygen on Au. A small IR peak at 1242 cm(-1) appears when an activated sample is exposed to CO. It reacts rapidly with oxygen and is shifted to 1236 cm(-1) if (18)O is used. It is assigned to the possible intermediate hydroxycarbonyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号