首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

2.
Conclusions The extensions of Trostel's solutions derived in this paper may be employed tor general over wide conditions with a resulting error less than 3%, the stress values being too small in magnitude by this amount. The error decreases as the variation of physical properties of the media decreases or as 1/2. M. M. Stanii, Lectures in Mathematical Elasticity during summer semester 1958, Purdue University.  相似文献   

3.
The present work aims to consider the.fourth test of general relativity theory by Shapiro.using radar echo delay in Yu’s(Ω,Aμν)-field theory.  相似文献   

4.
In natural convection heat transfer through a thin horizontal layer of carbon dioxide, maxima in the equivalent thermal conductivities are obtained in the vicinity of the respective pseudocritical temperatures at pressures of 75.8, 89.6 and 103.4 bar. The maxima are the more pronounced, the closer the critical point is approached.Comparison of experimental results with Nusselt equations shows good agreement except for the immediate vicinity of the pseudocritical temperature.In visual observations a distinct change in flow structure appears in the immediate vicinity of the pseudocritical temperature. A steady state polygon pattern and a boiling-like action could not be observed in this geometry.
Zusammenfassung Beim Wärmetransport durch freie Konvektion in einer dünnen waagerechten Schicht von Kohlendioxid ergaben sich Maxima der scheinbaren Wärmeleitfähigkeit in der Nähe der pseudokritischen Temperaturen bei Drükken von 75,8, 89,6 und 103,4 bar. Die Maxima sind um so ausgeprägter, je mehr man sich dem kritischen Punkt nähert.Ein Vergleich der Versuchsergebnisse mit Nusseltbeziehungen ergibt gute Übereinstimmung außer in unmittelbarer Umgebung der pseudokritischen Temperatur. Direkte Beobachtungen der Konvektionsmuster zeigen in unmittelbarer Umgebung der pseudokritischen Temperatur eine deutliche Strukturänderung. Ein stationäres Zellmuster und siedeähnliche Vorgänge konnten in dieser Anordnung nicht beobachtet werden.

Nomenclature A area of the heating or cooling plate - C constant in the correlation - g acceleration of gravity - h heat transfer coefficient - k thermal conductivity of fluid in the gap - k e equivalent thermal conductivity - m, n exponents of dimensionless numbers - q heat flux - T C,PC absolute temperature; critical C, pseudocritical PC - Gr Grashof numberg ( h c) 3/ 2 - Nu Nusselt numberh/k - Pr Prandtl number/ - thermal diffusivity - coefficient of volume expansion - width of gap - c,h temperature of cooling (c)-, heating (h)-plate - m arithmetic mean temperature ( c+ h)/2 - kinematic viscosity - c,h fluid density at the temperature of the cooling (c)- or heating (h)-plate - heat flow rate through the gap  相似文献   

5.
In this paper, a method using the mean velocity profiles for the buffer layer was developed for the estimation of the virtual origin over a riblets surface in an open channel flow. First, the standardized profiles of the mixing length were estimated from the velocity measurement in the inner layer, and the location of the edge of the viscous layer was obtained. Then, the virtual origins were estimated by the best match between the measured velocity profile and the equations of the velocity profile derived from the mixing length profiles. It was made clear that the virtual origin and the thickness of the viscous layer are the function of the roughness Reynolds number. The drag variation coincided well with other results.Nomenclature f r skin friction coefficient - f ro skin friction coefficient in smooth channel at the same flow quantity and the same energy slope - g gravity acceleration - H water depth from virtual origin to water surface - H + u*H/ - H false water depth from top of riblets to water surface - H + u*H/ - I e streamwise energy slope - I b bed slope - k riblet height - k + u*k/ - l mixing length - l s standardized mixing length - Q flow quantity - Re Reynolds number volume flow/unit width/v - s riblet spacing - u mean velocity - u* friction velocity = - u* false friction velocity = - y distance from virtual origin - y distance from top of riblet - y 0 distance from top of riblet to virtual origin - y v distance from top of riblet to edge of viscous layer - y + u*y/ - y + u*y/ - y 0 + u*y 0/ - u + u*y/ - shifting coefficient for standardization - thickness of viscous layer=y 0+y - + u*/ - + u*/ - eddy viscosity - ridge angle - v kinematic viscosity - density - shear stress  相似文献   

6.
An analytical model to predict heat transfer rates to an incompressible fluid in turbulent flow, with fully developed velocity profile, between a heated plate and a parallel, insulated plate is developed. The model employs van Driest's mixing length expression near the wall, a constant eddy diffusivitiy in the core and a constant turbulent Prandtl number. An approximate solution obtained by employing Rayleigh-Ritz method is shown to compare well with the exact solution obtained by numerical integration of the differential equations. The results are compared with the available experimental data and analytical solutions.
Anwendung der Rayleigh-Ritz-Methode auf die Wärmeübertragung bei erzwungener turbulenter Strömung
Zusammenfassung Es wird ein analytisches Modell zur Berechnung der Wärmeübertragung an ein inkompressibles Fluid in turbulenter Strömung mit voll ausgebildetem Geschwindigkeitsprofil zwischen einer beheizten Platte und einer dazu parallelen isolierten Platte angegeben. Das Modell verwendet van Driest's Ausdruck für die wandnahe Mischungslänge, eine konstante Wirbeldiffusivität im Kern und eine konstante turbulente PrandtlZahl. Eine Näherungslösung nach der Rayleigh-Ritz-Methode läßt sich gut mit der exakten Lösung vergleichen, die durch numerische Integration der Differentialgleichungen erhalten wurde. Die Ergebnisse werden mit verfügbaren Versuchswerten und analytischen Lösungen verglichen.

Nomenclature A+ dimensionless constant in van Driest formula - a+ dimensionless distance from the wall after which the eddy diffusivity of momentum is constant - b half-gap of passage - b+ dimensionless half-gap=bu*/ - Cf skin friction coefficient - Cp constant pressure specific heat - d hydraulic mean diameter defined as 4xarea/perimeter=4b - h convective heat transfer coefficient - K+ dimensionless constant in van Driest formula - k fluid thermal conductivity - m mass flow rate of fluid - Nu Nusselt number hd/k - P pressure - Pr Prandtl number=/ - Prt turbulent Prandtl number=m/ - qw heat flux at wall - Re Reynolds number=vmd/ - T Temperature - u+ dimensionless velocity=Vx/u* - u* friction velocity= - Vx axial velocity - x axial distance from the entrance - x+ dimensionless distance=x/d - y distance from the heated wall - y+ dimensionless distance=yu*/ Greek Symbols thermal molecular diffusivity - function equal to (H+)/ - boundary layer thickness - H eddy diffusivity of heat - m eddy diffusivity of momentum - m0 uniform eddy diffusivity of momentum in the core - dimensionless temperature - T-Ti/qwd/k uniform heat flux - T-Tw/Ti-Tw uniform temperature - fluid kinematic viscosity - fluid density - fluid shearing stress - bulk mean temperature—fully developed region - fully developed transverse temperature profile Suffixes 1 fully developed - 2 in the entrance region - i at the inlet - m bulk mean value - w at the heated wall  相似文献   

7.
This study centres round the problem of flow of a liquid past a vertical porous flat plate. Considering two cases, when the plate is stationary and when it is in motion, the effect of porosity on the flow has been determined. It is found that, when the plate is stationary, the velocity of the liquid increases with increase in the suction velocity and decreases with increase in the injection velocity, and for a given suction or injection velocity, the velocity of the liquid increases with increase in time and approaches to the steady state case. But, when the plate is in motion, the velocity of the liquid decreases with increase in the suction velocity and increases with increase in the injection velocity in the constant film thickness region and also in the dynamic meniscus region provided that the gravitational force is greater than the surface tension force. In this case, the stagnation point and the minimum pressure point on the free surface have also been determined. In the case of injection there always exists a unique stagnation point and also a minimum pressure point. But in the case of suction the stagnation point does not always exist and there is no minimum pressure point.Nomenclature A n roots of equation (3.18) - C function defined by equation (4.20) - C n coefficients defined by equation (4.15) - F function of R 0 and T 0 defined by equation (4.23) - g acceleration of gravity - h film thickness at any point - h 0 film thickness in the constant thickness region - h m film thickness at the minimum pressure point - h st film thickness at the stagnation point - L m location of the minimum pressure point=h m /h 0 - L st location of the stagnation point=h st/h 0 - n summation index - N function defined by equation (4.11) - p pressure - q flow rate - q 0 flow rate in the constant thickness region - Q non-dimensional flow rate - R suction or injection Reynolds number=v 0 h 0/v - R 0 suction or injection Reynolds number corresponding to the constant thickness region=v 0 h/ - t time - T non-dimensional time=t/h 2 - T 0 non-dimensional parallel flow film thickness=h 0(g/u w )1/2 - u vertical velocity - u perturbation velocity for u - u s surface velocity - u W withdrawal velocity of the plate - U steady part of the velocity u for the stationary plate - non-dimensional velocity=u/gh 2 - U* non-dimensional velocity=U/gh 2 - v horizontal velocity - v perturbation velocity for V - v 0 velocity of suction or injection - V transient part of the velocity u for stationary plate - x, y coordinates - X non-dimensional x-coordinate=x 2/gh 4 - Y non-dimensional y-coordinate=y/h Greek Symbols n roots of equation (3.14) - n eigenvalues defined by equation (4.13) - n functions defined by equation (4.14) - n eigenvalues defined by equation (3.15) - n non-dimensional eigenvalues= n h/ - kinematic viscosity - liquid density - surface tension of the liquid air interface - stream function - non-dimensional stream function=/gh 3  相似文献   

8.
Summary This note presents an exact solution for the stress and displacement field in an unbounded and transversely constrained elastic medium resulting from the motion of a plane heat source travelling through the medium at constant speed in the direction normal to the source plane.Nomenclature mass density - diffusivity - thermal conductivity - Q heat emitted by plane heat source per unit time per unit area - speed of propagation of plane heat source - shear modulus - Poisson's ratio - T temperature - x, y, z normal stress components - u x, uy, uz displacement components - c speed of irrotational waves - t time - x, y, z Cartesian coordinates - =x–vt moving coordinate  相似文献   

9.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

10.
Streamwise pseudo-vortical motions near the wall in a fully-developed two-dimensional turbulent channel flow are clearly visualized in the plane perpendicular to the flow direction by a sophisticated hydrogen-bubble technique. This technique utilizes partially insulated fine wires, which generate hydrogen-bubble clusters at several distances from the wall. These flow visualizations also supply quantitative data on two instantaneous velocity components, and w, as well as the streamwise vorticity, x . The vorticity field thus obtained shows quasi-periodicity in the spanwise direction and also a double-layer structure near the wall, both of which are qualitatively in good agreement with a pseudo-vortical motion model of the viscous wall-region.List of symbols C i ,c i ,d i constants in Eqs. (2), (3) and (4) - H channel width (m) - Re H Reynolds number (= U c H/) - Re Reynolds number (= U c /) - T period (s) - t time (s) - U mean streamwise velocity (m/s) - U c center-line velocity (m/s) - u friction velocity (m/s) - u, , w velocity fluctuations (m/s) - x, y, z coordinates (m) - * displacement thickness (m) - momentum thickness (m) - mean low-speed streak spacing (m) - kinematic viscosity (m2/s) - phase difference - x streamwise vorticity fluctuation (1/s) - ( )+ normalized by u and - () root mean square value - () statistical average This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

11.
The effect of Hall currents on magneto hydrodynamic (MHD) flow of an incompressible viscous electrically conducting fluid between two non-conducting porous plates in the presence of a strong uniform magnetic field is studied. The flow is generated by a small uniform suction at the plates. Solutions are obtained for suction Reynolds number R1, considering two cases for the imposed magnetic field, viz. (i) when the magnetic field is perpendicular to the plates (parallel to y-axis), and (ii) when the magnetic field is parallel to the plates and perpendicular to the primary flow direction (parallel to z-axis). The effect of the Hall currents on the flow as well as on the heat transfer is studied. It is observed that in the absence of Hall currents, the change of the direction of the applied magnetic field does not affect the primary flow.Nomenclature B total magnetic induction vector - V velocity vector - E electric field vector - J current density vector - U 0 suction velocity - T temperature of the fluid at any point - B 0 imposed magnetic field - u x-component of fluid velocity - v y-component of fluid velocity - w z-component of fluid velocity - density of the fluid - kinematic viscosity of the fluid - c p specific heat at constant pressure - p fluid pressure - electrical conductivity of the fluid - K coefficient of thermal conductivity - e magnetic permeability - n e number density of electrons - e electric charge - dimensionless distance (=y/h) - f(), g(), Q(), () dimensionless functions defined in (14) - R suction Reynolds number (=U 0 h/) - M Hartmann number (=B 0 h(/)1/2) - m Hall parameter (=B 0/en e) - Pr Prandtl number of the fluid (=c p/K) - s dimensionless quantity defined as s=(T 1T 0)/[vU 0/(hc p)]  相似文献   

12.
An equation is derived for the ascent velocity of large gas bubbles in a liquid. This velocity is assumed to be governed by the propagation of a wavelike perturbation caused by the bubble in the liquid.Notation w bubble (or drop) velocity - specific gravity - dynamic viscosity - kinematic viscosity - r bubble (or drop) radius - surface tension - coefficient of friction - g gravitational acceleration - D bubble (or drop) diameter - p pressure - c propagation velocity of the wavelike perturbation - wavelength  相似文献   

13.
Summary Thermal free convection from a sphere has been studied by melting solid benzene spheres in excess liquid benzene (Pr=8,3; 108<Gr<109). Overall heat transfer as well as local heat transfer were investigated. For the effect of cold liquid produced by the melting a correction has been applied. Results are compared with those obtained by other workers who used alternative experimental methods.Nomenclature coefficient of heat transfer - d characteristic length, here diameter of sphere - thermal conductivity - g acceleration of free fall - cubic expansion coefficient - T temperature difference between wall and fluid at infinity - kinematic viscosity - density - c specific heat capacity - a thermal diffusivity (=/c) - D diffusion coefficient - Nu dimensionless Nusselt number (=d/) - Nu* the analogous number for mass transfer (=kd/D) - mean value of Nusselt number - Gr dimensionless Grashof number (=gd 3T/ 2) - Gr* the analogous number for mass transfer (=gd 3x/ 2) - Pr dimensionless Prandtl number (=/a) - Sc dimensionless Schmidt number (=/D)  相似文献   

14.
Zusammenfassung Mit Hilfe der Mischungswegtheorie wurden Gleichungen zur Berechnung der Geschwindigkeitsprofile und des Druckabfalles bei der turbulenten, abwärtsterichteten Gas/Film-Strömung aufgestellt. Zur Berechnung des Wärmeübergangs wurde die turbulente Temperaturleitfähigkeit aus einem halbempirischen Ansatz bestimmt. Es konnte eine befriedigende Übereinstimmung zwischen den berechneten und gemessenen Nußelt-Zahlen bei der Oberflächenverdampfung erzielt werden. Zur Auslegung von Fallstromverdampfern wurde ein Computerprogramm erstellt. Damit lassen sich Einflußgrößen wie Wandtemperatur, Filmdicke, Verdampfungsrate usw. in Abhängigkeit von der Lauflänge bestimmen.
Flow and heat transfer in surface evaporation and film condensation
Using the mixing length model, equations were established to calculate the velocity profiles and pressure drop in turbulent downward directed gas/film flow. The thermal diffusivity needed for the calculation of heat transfer was determined from a semiempirical model. The calculated Nußelt-numbers agreed very well with experiments. For the design of falling-film evaporators, a computer program was developed, which enables to evaluate wall temperature, film thickness, evaporation rate etc. as a function of flow-path length.

Formelzeichen a Temperaturleitfähigkeit - c spez. Wärmekapazität - d Durchmesser - fm bezogene mittlere turbulente Temperaturleitfähigkeit - Fi /(32/g)1/3) Filmkennzahl - Fr Froude-Zahl - g Fallbeschleunigung - Ka 3/g4 Kapitza-Zahl - L Rohrlänge - l Mischungsweg - m Massenstrom - Nu (2/g)1/3/ Nußelt-Zahl - Nu / Nußelt-Zahl des Filmes - p Druck - Pr /a Prandtl-Zahl - q Wärmestromdichte - R Radius - Re Reynolds-Zahl - Reü Übergangs-Reynolds-Zahl - Rew Schubspannungs-Reynolds-Zahl der Flüssigkeit - r radiale Koordinate - T Temperatur - u Geschwindigkeit - uw Schubspannungsgeschwindigkeit der Flüssigkeit - u Grenzflächengeschwindigkeit - uT Schubspannungsgeschwindigkeit des Gases - y Wandabstand - y* y/ dimensionsloser Wandabstand - z axiale Koordinate Griechische Zeichen Wärmeübergangskoeffizient - Filmdicke - dyn. Viskosität - dimensionslose Temperatur - Wärmeleitfähigkeit - kin. Viskosität - Dichte - Oberflächenspannung - Schubspannung Zusatzzeichen und Indizes G Gas - K Kondensation - s Sättigung - t turbulent - w Wand - wi Welleninstabilität - Phasengrenze - - mittlere Größe  相似文献   

15.
Zusammenfassung Für die Kreiszylinderschale wurde eine Biegetheorie aufgestellt, in der die Gleichgewichtsbedingungen (unter Voraussetzung der Symmetrie des Momententensors M ik ) durch drei Spannungsfunktionen 1, 2, 3 exakt erfüllt sind. Bei der Definition der Deformationsgrößen und der Einführung der Elastizitätsgesetze war die Reißner-Meißnersche Theorie der symmetrisch belasteten Rotationsschale das Vorbild. Die drei Differentialgleichungen für die Verschiebungen 1 2, 3 unterscheiden sich von den drei Differentialgleichungen für die Spannungsfunktionen 1, 2, 3 formal nur im Vorzeichen der Poissonschen Querkontraktionsziffer v. Die beiden Differentialgleichungen achter Ordnung, die man nach Eliminationsprozessen sowohl für 3 als auch für 3 erhält, unterscheiden sich nicht mehr voneinander. So trifft man bei der Zylinderschale die Timpe-Wieghardtsche Analogie zwischen Durchbiegung 3 der Platte und Airyscher Spannungsfunktion 3 der Scheibe wieder.Es konnte ferner gezeigt werden, daß unsere neue Biegetheorie der bekannten Flüggeschen Theorie an Genauigkeit nicht nachsteht.Es ist wohl nicht zu bezweifeln, daß auch bei Schalen beliebiger Gestalt unsere Analogie vorhanden ist. Sie scheint uns wertvoll als Ordnungsprinzip inmitten der Fülle von Gleichungen, die nun einmal zu einer Schalentheorie gehören.Die Formulierung des Schalenproblems mit Hilfe der drei Spannungsfunktionen 1, 2, 3 wird sich immer dann empfehlen, wenn die Randbelastung vorgegeben ist. Denn dann lassen sich die Randbedingungen in den Spannungsfunktionen übersichtlicher formulieren als in den Verschiebungen. Auch die Gewißheit, daß selbst durch radikales Streichen lästiger Glieder in den Differentialgleichungen der Spannungsfunktionen die Gleichgewichtsbedingungen nicht verletzt werden, mag manchem Rechner angenehm sein.  相似文献   

16.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

17.
Laser-Doppler velocimetry (LDV) measurements and flow visualizations are used to study a turbulent boundary layer over a smooth wall with transverse square cavities at two values of the momentum thickness Reynolds number (R =400 and 1300). The cavities are spaced 20 element widths apart in the streamwise direction. Flow visualizations reveal a significant communication between the cavities and the overlying shear layer, with frequent inflows and ejections of fluid to and from cavities. There is evidence to suggest that quasi-streamwise near-wall vortices are responsible for the ejections of fluid out of the cavities. The wall shear stress, which is measured accurately, increases sharply immediately downstream of the cavity. This increase is followed by a sudden decrease and a slower return to the smooth wall value. Integration of the wall shear stress in the streamwise direction indicates that there is an increase in drag of 3.4% at bothR .Nomenclature C f skin friction coefficient - C fsw friction coefficient for a continuous smooth wall - k height of the cavity - k + ku / - R Reynolds number based on momentum thickness (U 1 /v) - Rx Reynolds number based on streamwise distance (U 1 x/) - s streamwise distance between two cavities - t time - t + tu 2 / - U 1 freestream velocity - mean velocity inx direction - u,v,w rms turbulent intensities inx,y andz directions - u local friction velocity - u sw friction velocity for a continuous smooth wall - w width of the cavity - x streamwise co-ordinate measured from the downstream edge of the cavity - y co-ordinate normal to the wall - z spanwise co-ordinate - y + yu / - boundary layer thickness - 0 boundary layer thickness near the upstream edge of the cavity - i thickness of internal layer - kinematic viscosity of water - + zu / - momentum thickness  相似文献   

18.
One of the unresolved issues on Saint-Venant's principle concerns the energy decay estimates established in the literature for the traction boundary-value problem of three-dimensional linear isotropic elastostatics for a cylinder. For the semi-infinite cylinder with traction-free lateral surface and self-equilibrated loads at the near end, it has been shown that the stresses decay exponentially from the end and results were obtained for the estimated decay rate, which is a lower bound for the exact decay rate. These results are, however, generally conservative in that they underestimate the exact decay rate. Another shortcoming, which motivated the present investigation, is that the estimated decay rates tend to zero as the Poisson's ratio tends to the value 1/2. Thus for the limiting case of an incompressible material, these methods fail to establish exponential decay. The purpose of the present paper is to remedy this defect. In particular, an exponential decay estimate is established with estimated decay rate independent of Poisson's ratio. Thus, in particular, the results here hold in the incompressible limit as 1/2. An alternative treatment directly for the incompressible case has been given recently. It should be noted that the stresses in the three-dimensional traction boundary-value problem do depend on Poisson's ratio and that stress decay estimates for the cylinder problem with estimated decay rates dependent on are, in fact, to be expected. However, in the absence of such results that do not deteriorate as 1/2, we obtain here an estimated decay rate that is independent of .  相似文献   

19.
Zusammenfassung Für den Fall, daß sich in einem halbunendlichen Körper in der Tiefe L eine Punkt- bzw. Linienquelle befindet und daß an der Oberfläche des Körpers ein örtlich und zeitlich konstanter Wärmeübergangskoeffizient herrscht, wird das stationäre Temperaturfeld analytisch berechnet. Beim Vergleich mit einer Näherungslösung (Hilfsschicht) zeigt sich, daß nicht so sehr die Biot-Zahl Bi= · L/ als vielmehr der größte Winkel zwischen Wandnormale und Wärmestromdichte in der Hilfsschicht ein Maß für die Genauigkeit der Näherungslösung ist.
Calculation of the temperature field around a buried point- and linesource, respectively, when the boundary condition is Newton's law
The steady state temperature field in a semiinfinite body caused by a buried point- and linesource, respectively, has been analytically calculated. The comparison with a simple approach (additional-layer) shows that the greatest angle between the normal of the wall and the heat flux density in the additional-layer, describes the quality of the approach better than the Biot-number Bi=L/ does.

Formelzeichen A Fläche - Bi Biot-Zahl - C Eigenwertfunktion - E1 Exponentialintegral - exp Exponentialfunktion - i komplexe Einheit - J0 Besselfunktion nullter Ordnung und 1. Grades - L Verlegungstiefe der Punkt- bzw. Linienquelle - Q Quellstärke - r Radius - Re Realteil eines Ausdruckes - T Temperatur - t Integrationsvariable - x, y, z Ortskoordinaten - Wärmeübergangskoeffizienten an der Erdoberfläche - Laplace-Operator - Wärmeleitfähigkeit des Erdbodens - dimensionslose Temperatur - Integrationsvariable - dimensionsloser Radius - komplexe Ortskoordination Indizes 0 Erdoberfläche, senkrecht über der Quelle - 1 Lösung für das 1. Randwertproblem - 3 Lösung für das 3. Randwertproblem - 13 Zusatzfunktion - w Erdoberfläche - Umgebungstemperatur - Näherungslösung  相似文献   

20.
The unsteady laminar boundary layer flow is investigated for a semi-infinite flat plate subjected to impulsive motion. An approximate solution is obtained by utilizing Meksyn's method. These results vary smoothly from Rayleigh's unsteady solution to the steady state solution of Blasius. Results are compared to those of Lam and Crocco.Nomenclature A expansion coefficient, see eq. (13) - a expansion coefficient, see eq. (10) - B expansion coefficient, see eq. (14) - b expansion coefficient, see eq. (12) - G function defined by eq. (6) - U free stream velocity - u velocity in x direction - v velocity in y direction - x coordinate along plate - y coordinate normal to plate Greek symbols (l, ) incomplete gamma function - function defined by eq. (15) - y(U/x) 1/2 - kinematic viscosity - x/Ut - (Uvx)1/2 f(, )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号