首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A general formalism for a quantum particle moving in an environment based on the path integral formulation of quantum mechanics is presented. The environment can be the valence electron gas of a metal or the phonons of the host in which the particle moves, or both. The advantage of this approach is that it gives a direct space-time picture of the motion. Integrating out the coordinates of the environment an effective action for the particle is obtained. It consist of two parts. An adiabatic term, that is local in time (and as such describable as a potential), describing the influence of the fully relaxed environment on the particle, and a term that accounts for the dynamical part of the response of the environment due to the motion of the particle. As an example I have considered a particle moving in a tight binding band with an electron gas environment. Three energy scales play a role here. They are the bare hopping amplitude, the temperature and the inverse tunneling time (i.e. the time it takes the particle to tunnel from one site to the next). Note that the Fermi energy drops out of the problem. I find, as did Kondo in his recent theory, a decreasing diffusion constant as a function of temperature.  相似文献   

2.
Roumen Tsekov 《Physics letters. A》2018,382(33):2230-2232
The Klein–Kramers equation, governing the Brownian motion of a classical particle in a quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction the corresponding Smoluchowski equation is obtained. Introducing the Bohm quantum potential, this Smoluchowski equation is extended to describe the Brownian motion of a quantum particle in quantum environment.  相似文献   

3.
The fluctuation-dissipation theorem is a central theorem in nonequilibrium statistical mechanics by which the evolution of velocity fluctuations of the Brownian particle under a fluctuating environment is intimately related to its dissipative behavior. This can be illuminated in particular by an example of Brownian motion in an ohmic environment where the dissipative effect can be accounted for by the first-order time derivative of the position. Here we explore the dynamics of the Brownian particle coupled to a supraohmic environment by considering the motion of a charged particle interacting with the electromagnetic fluctuations at finite temperature. We also derive particle’s equation of motion, the Langevin equation, by minimizing the corresponding stochastic effective action, which is obtained with the method of Feynman-Vernon influence functional. The fluctuation-dissipation theorem is established from first principles. The backreaction on the charge is known in terms of electromagnetic self-force given by a third-order time derivative of the position, leading to the supraohmic dynamics. This self-force can be argued to be insignificant throughout the evolution when the charge barely moves. The stochastic force arising from the supraohmic environment is found to have both positive and negative correlations, and it drives the charge into a fluctuating motion. Although positive force correlations give rise to the growth of the velocity dispersion initially, its growth slows down when correlation turns negative, and finally halts, thus leading to the saturation of the velocity dispersion. The saturation mechanism in a supraohmic environment is found to be distinctly different from that in an ohmic environment. The comparison is discussed.  相似文献   

4.
杨旭峰  凡凤仙 《声学学报》2014,39(6):745-751
综合考虑黏性夹带力、Basset力、虚拟质量力和压力梯度力,建立颗粒在声场中的动力学模型,利用变步长四阶RungeKutta算法和二阶隐式Adams插值算法对颗粒的受力和运动进行数值模拟。将模拟和实验得到的颗粒运动特性进行对比,验证数值模拟的正确性。在此基础上,研究气温和颗粒密度对颗粒动力学的影响规律。结果表明,黏性夹带力对颗粒运动起主导作用;气温升高,压力梯度力与黏性夹带力之间的相位差减小,Basset力、虚拟质量力与黏性夹带力之间的相位差增大。研究还发现,气温较低时,颗粒密度对颗粒运动有重要影响,夹带系数随着密度的增加而迅速下降;气温较高时,颗粒密度对颗粒运动的影响较小,颗粒位移振幅和夹带系数相对低温时明显增加。   相似文献   

5.
Jian-Xin Nie 《中国物理 B》2022,31(4):44703-044703
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature (in unit 103 K), high pressure (in unit GPa), and high-speed motion (in units km/s) was studied, and a combustion model of the aluminum particles in detonation environment was established. Based on this model, a combustion control equation for aluminum particles in detonation environment was obtained. It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size, system temperature, and diffusion coefficient. The calculation result shows that a higher system temperature, larger diffusion coefficient, and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles. After considering the particle size distribution characteristics of aluminum powder, the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder, and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results. This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.  相似文献   

6.
Temperature Dependence of Thermal Conductivity of Nanofluids   总被引:1,自引:0,他引:1       下载免费PDF全文
Mechanism of thermal conductivity of nanofluids is analysed and calculated, including Brownian motion effects, particle agglomeration and viscosity, together influenced by temperature. The results show that only Brown- Jan motion as reported is not enough to describe the temperature dependence of the thermal conductivity of nanofluids. The change of particle agglomeration and viscosity with temperature are also important factors. As temperature increases, the reduction of the particle surface energy would decrease the agglomeration of nanopartieles, and the reduction of viscosity would improve the Brownish motion. The results egree well with the experimental data reported.  相似文献   

7.
Brownian motion and correlation in particle image velocimetry   总被引:8,自引:0,他引:8  
In particle image velocimetry applications involving either low velocities or small seed particles, Brownian motion can be significant. This paper addresses the effects of Brownian motion. First, general equations describing cross-correlation particle image velocimetry are derived that include Brownian motion. When light-sheet illumination particle image velocimetry (PIV) is used Brownian motion diminishes the signal strength. A parameter describing this effect is introduced, and a weighting function describing the contribution to the measured velocity as a function of position is derived. The latter is unaffected by Brownian motion. Microscopic PIV Brownian motion also diminishes the signal strength. The weighting function for microscopic PIV is found to depend on Brownian motion, thus affecting an important experimental parameter, the depth of correlation. For both light-sheet illumination and microscopic PIV, a major consequence of Brownian motion is the spreading of the correlation signal peak. Because the magnitude of the spreading is dependent on temperature, PIV can, in principle, be used to simultaneously measure velocity and temperature. The location of the signal peak provides the velocity data, while the spreading of the peak yields temperature.  相似文献   

8.
9.
《Physics letters. A》2005,336(1):16-24
We show a completely analytical approach to the decoherence induced by a zero temperature environment on a Brownian test particle. We consider an Ohmic environment bilinearly coupled to an oscillator and compute the master equation. From diffusive coefficients, we evaluate the decoherence time for the usual quantum Brownian motion and also for an upside-down oscillator, as a toy model of a quantum phase transition.  相似文献   

10.
The motion of a particle in a periodic potential is studied at low temperatures where transitions between the potential wells are caused by quantum tunnelling. The theory accounts for the dissipative interaction with an environment which for a wide range of parameters leads to incoherent tunnelling at a rate with a nonanalytic temperature dependence. The influence of an external force is determined and a nonanalytic response is found at T = 0. The case of a biased double-well system is treated too.  相似文献   

11.
12.
A new thermal conductivity model for nanofluids   总被引:8,自引:0,他引:8  
In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, keff, which is composed of the particles conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the keffmodel, more experimental data sets are needed.  相似文献   

13.
The steady motion of a nonuniformly heated spherical aerosol particle through a viscous gaseous medium is theoretically studied in the Stokes approximation. It is assumed that the mean temperature of the particle surface may differ appreciably from the ambient temperature. The solution of gasdynamic equations yields an analytical expression for the drag of the medium and the gravitational fall velocity of the nonuniformly heated spherical solid particle with allowance for the temperature dependence of the density of the medium and molecular transfer coefficients (viscosity and thermal conductivity). Numerical estimates show that heating of the particle surface considerably influences the drag force and gravitational fall velocity.  相似文献   

14.
15.
We study the quantum Brownian motion of a charged particle in the presence of a magnetic field. From the explicit solution of a quantum Langevin equation we calculate quantities such as the velocity correlation function and the mean-squared displacement. Our calculated expressions contain as special cases the motion of aclassical particle in a magnetic field and that of afree (but quantum) particle, in a dissipative environment.  相似文献   

16.
Transport properties under the influence of finite friction   总被引:2,自引:0,他引:2       下载免费PDF全文
展永  赵同军  于慧  宋艳丽 《中国物理》2002,11(6):624-628
Using the Langevin Monte Carlo method,the influence of friction on the directed motion of a Brownian particle driven by an external noise source is investigated.The results show that the exitence and change of the environment friction influence the establishment and development of the steady motion of a Brownian particle derived by nonequilibrium fluctuation.The most probable correlation time,which corresponds to the maximum current,is inversely proportional to the friction coefficient.The abnormal transition of the current with different friction appears because of the coupling between the effective ratchet potential and coloured noise intensity.  相似文献   

17.
三维层流等离子体射流中陶瓷颗粒的运动与加热   总被引:5,自引:0,他引:5  
本文对带载气-颗粒侧向喷射的三维层流等离子体长射流中陶瓷颗粒的运动与加热进行了模拟研究,并与忽略载气喷射影响时的结果进行了比较。模拟结果表明,侧向载气喷射所引起的三维效应对颗粒行为有明显影响,陶瓷颗粒在等离子体射流中加热时颗粒内部可能出现相当大的温差,取决于环境参数,陶瓷颗粒表面温度可以高于也可以低于中心温度。  相似文献   

18.
19.
We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.  相似文献   

20.
We consider the motion of an underdamped Brownian particle in a tilted periodic potentialin a wide temperature range. Based on the previous data and the new simulation results weshow that the underdamped motion of particles in space-periodic potentials can beconsidered as overdamped motion in the velocity space in the effective double-wellpotential. Simple analytic expressions for the particle mobility and diffusion coefficientare derived with the use of the presented model. These accurately match numericalsimulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号