首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The sorption of Cu(2+), Pb(2+), Ni(2+), and Cd(2+) ions on the aluminum(III) phosphate was observed to increase with increases in the concentration, temperature, and pH of the system. The apparent dissociation (pK(a)), binding (pK(b)) and exchange (pK(ex)) constants of aluminum(III) phosphate were evaluated and found to be dependent upon the temperature and nature of the metal cations. The values of the dissociation constants (pK(a)) followed the order Pb(2+)相似文献   

2.
Tetravalent metal phosphates (M=Zr, Ti, and Sn) were prepared and characterized by XRD, surface properties, and TG-DTA. The cation exchange and sorption behavior of these metal phosphates toward transition metal ions such as Cu(2+), Co(2+), and Ni(2+) have been studied comparatively as a function of temperature and concentration. The adsorption process was found to increases with increase in temperature and concentration. The selectivity order for alpha-titanium and alpha-tin phosphates is Cu(2+)>Co(2+)>Ni(2+), whereas for alpha-zirconium phosphate it is Cu(2+)>Ni(2+)>Co(2+). The ion exchange capacity of alpha-titanium phosphate is greater than those of other phosphates, which is explained on the basis of the surface behavior, disorderness of the system, degree of hydrolysis of incoming guest adsorbate metal ions, and structural steric hindrance of the exchangers during adsorption and sorption. The distribution coefficient, Gibbs free energy, enthalpy, and entropy values indicate that the ion-exchange processes are spontaneous.  相似文献   

3.
Removal of Pb2+ and Ni2+ from aqueous solutions by sorption onto natural bentonite was investigated. Experiments were carried out as a function of particle size, the amount of bentonite, pH, concentration of metals, contact time, and temperature. The adsorption patterns of metal ions onto followed the Langmuir, Freundlich, and Dubinin-Radushkevich isotherms. This included adsorption isotherms of single-metal solutions at 303 K by batch experiments. The thermodynamic parameters (DeltaH,DeltaS,DeltaG) for Pb2+ and Ni2+ sorption onto bentonite were also determined from the temperature dependence. The adsorptions were endothermic reactions. The results suggested that natural bentonite is suitable as a sorbent material for recovery and adsorption of metal ions from aqueous solutions.  相似文献   

4.
Recycling of sugarcane bagasse and its coal as metal sorbents to capture metal ions from wastewater is the aim of this study. Thus, stability of sugarcane bagasse and its coal, in addition to the solubilities of metal ions in synthetic solution, were determined in this study at different pH values. Also, sorption of Fe, Mn, Cd, and Pb ions with different concentrations (10‐100 mg L?1) on different grain size fractions of sugarcane bagasse (< 150 > μm) and its coal (< 80 > μm) was carried out under different pH values (2, 4 and 6), dosage (2, 6, and 10 g L?1), time intervals (15‐300 min.) and temperature (20‐50 °C). The results indicated that the sugarcane bagasse and its coal were more stable at pH 6, and the solubilities of metal ions in the synthetic solution exhibited high values at pH 2 more than pH 4 and 6, respectively. Generally, removal of metal ions using the sorbents increased with the decreasing of grain size fractions and with increasing of pH values (6 > 4 > 2), sorbent doses (10 > 6 > 2 g L?1) and initial concentrations of metal ions (10‐100 mg L?1). Coal of sugarcane bagasse was more effective than the sugarcane bagasse for removal of the metal ions from solution. Positive values of ΔH° suggest the endothermic nature of sorption in all cases. The negative Gibb's free energy values indicate the feasibility of the process and spontaneous nature of sorption (Fe‐bagasse coal system), while the positive value of ΔG° suggests the non‐spontaneous character of adsorption of all metals. The negative values of entropy change ΔS° (Pb‐bagasse system) indicate the highly ordered adsorption process in this case, while the positive values of ΔS° show the increased randomness at solid/solution interface during the sorption metal ion on bagasse. The results of activation energy values indicate the order of sorption feasibility is: Pb > Fe > Cd > Mn in the case of bagasse and Fe > Pb > Cd > Mn in the case of coal. Generally, the results of this study suggest that the sugarcane bagasse and its coal might provide an economical method for the removal of metal ions from wastewater.  相似文献   

5.
The separation behaviour of Pb(2+), Cu(2+), Cd(2+), Co(2+), Zn(2+) and Ni(2+) on bifunctional quaternary ammonium-sulfonate mixed ion-exchangers (Dionex, IonPac CS5 and CG5) was studied using different eluents including solutions of oxalic acid, potassium oxalate, sodium oxalate and ammonium oxalate. Separated metal ions were followed by using 4-(2-pyridylazo) resorcinol (PAR) as post-colouring complex. The retention factors of different ions proved to be dependent on the pH, concentration, nature of each complexing agent, and to less extent on eluent flow rate. The retention behaviour and separation mechanism of complexed metal analytes are discussed in the light of the stability of metal complexes and the ligand complexing ability of used eluent. Comparison between various mobile phases is evaluated, and both sodium and potassium oxalate can be used successfully for simultaneous separation of studied metals with good resolution within short elution periods. The method can be used in different applications including analysis of bottled water from different resources.  相似文献   

6.
Macroscopic sorption studies indicated that Pb sorption capacity was independent of pH over the pH range 5-7, while sorption as a function of reaction time up to two weeks for systems with no bulk precipitate phases showed continuous Pb uptake on dolomite. This could be due to diffusion of Pb into the micropores of dolomite as well as an increase in surface sites caused by particle size reduction during suspension mixing. Normalized XANES spectra for systems undersaturated with respect to Pb carbonate precipitates resembled the spectrum of Pb4(OH)4(4+), suggesting that Pb is mainly coordinated to dolomite as an inner-sphere surface complex. On the other hand, the XANES spectrum for 10(-3) M Pb at 1 atm CO2(g) in a 2 M Mg(NO3)2 background electrolyte solution resembled that of cerussite, while a sample at 5 x 10(-4) M Pb in equilibrium with air and 2 M Mg(NO3)2 resembled that of hydrocerussite. EXAFS analyses of sorption samples in chloride solutions showed that there were only first-shell contributions under 1 atm CO2(g), while higher shell contributions from Ca/Mg were seen at 10(-3.42) atm CO2(g). On the other hand, EXAFS samples prepared in nitrate solutions showed noticeable differences in speciation under different reaction conditions-from outer-sphere surface complexes at low Pb concentrations and pH, to inner-sphere surface complexes at moderate Pb concentrations and neutral pH, to the formation of Pb carbonate precipitates at the highest Pb loadings.  相似文献   

7.
The effect of heavy metal ions, Cd(2+), Hg(2+) and Pb(2+) on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd(2+), while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg(2+) and Pb(2+). The presence of Cd(2+) decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg(2+) and Pb(2+) decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd(2+), Hg(2+) and Pb(2+) were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions.  相似文献   

8.
Pyrocatechol is immobilized on cellulose via ---NH---CH2---CH2---NH---SO2---C6H4---N=N--- linker and the resulting macromolecular chelator characterized by IR, TGA, CPMAS 13C NMR and elemental analyses. It has been used for enrichment of Cu(II), Zn(II), Fe(III), Ni(II), Co(II), Cd(II) and Pb(II) prior to their determination by flame atomic absorption spectrometry (FAAS). The pH ranges for quantitative sorption (98.0–99.4%) are 4.0–7.0, 5.0–6.0, 3.0–4.0, 5.0–7.0, 5.0–8.0, 7.0–8.0 and 4.0–5.0, respectively. The desorption was found quantitative with 0.5 mol dm−3 HCl/HNO3 (for Pb). The sorption capacity of the matrix for the seven metal ions has been found in the range 85.3–186.2 μmol g−1. The optimum flow rate of metal ion solution for quantitative sorption of metal onto pyrocatechol functionalized cellulose as determined by column method, is 2–6 cm3 min−1, whereas for desorption it is 2–4 cm3 min−1. The tolerance limits for NaCl, NaBr, NaI, NaNO3, Na2SO4, Na3PO4, humic acid, EDTA, ascorbic acid, citric acid, sodium tartrate, Ca(II) and Mg(II) in the sorption of all the seven metal ions are reported. Ascorbic acid is tolerable up to 0.8 mmol dm−3 with Cu and Pb where as sodium tartrate does not interfere up to 0.6 mmol dm−3 with Pb. There is no interference of NaBr, NaCl and NaNO3 up to a concentration of 0.5 mol dm−3, in the sorption of Cu(II), Cd(II) and Fe(III) on to the chelating cellulose matrix The preconcentration factors are between 75 and 300 and t1/2 values ≤5 min for all the metal ions. Simultaneous sorption of Cu, Zn, Ni and Co is possible at pH 5.0 if their total concentration does not exceed lowest sorption capacity. The present matrix coupled with FAAS has been used to enrich and determine the seven metal ions in river and tap water samples (relative standard deviation (R.S.D.) 1.05–7.20%) and synthetic certified water sample SLRS-4 (NRC, Canada) with R.S.D. 2.03%. The cobalt present in pharmaceutical vitamin tablets was also preconcentrated on the modified cellulose and determined by FAAS (R.S.D. 1.87%).  相似文献   

9.
Kim S  Noh JY  Kim KY  Kim JH  Kang HK  Nam SW  Kim SH  Park S  Kim C  Kim J 《Inorganic chemistry》2012,51(6):3597-3602
In this study, an assay to quantify the presence of aluminum ions using a salicylimine-based receptor was developed utilizing turn-on fluorescence enhancement. Upon treatment with aluminum ions, the fluorescence of the sensor was enhanced at 510 nm due to formation of a 1:1 complex between the chemosensor and the aluminum ions at room temperature. As the concentration of Al(3+) was increased, the fluorescence gradually increased. Other metal ions, such as Na(+), Ag(+), K(+), Ca(2+), Mg(2+), Hg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), Cr(3+), Fe(3+), and In(3+), had no such significant effect on the fluorescence. In addition, we show that the probe could be used to map intracellular Al(3+) distribution in live cells by confocal microscopy.  相似文献   

10.
Xanthate ions sorption on copper ore (chalcopyrite) is studied as a function of temperature (273-293 K) in the pH range (8-11). The sorption of xanthate ions at all the pH values is observed to increase with the increase in temperature. The changes in pH, dissolution studies of the ore, SO2(4)- concentration determinations, and FTIR studies were employed to probe the mechanism of the process of adsorption. The results are found to fit successfully to the linear form of the Freundlich equation. The isosteric heats of adsorption (DeltaHi) are also calculated and show that the adsorption of xanthate on copper ore under the given experimental condition is endothermic in nature. The values of DeltaHi found are in conformity with the ion exchange sorption of xanthate by the chalcopyrite.  相似文献   

11.
Narin I  Soylak M  Elçi L  Doğan M 《Talanta》2000,52(6):1041-1046
A simple preconcentration method is described for the determination of Cu, Mn, Co, Cd, Pb, Ni and Cr in water samples by flame AAS. Trace metal ions in water were sorbed as pyrocatechol violet complexes on activated carbon column at the pH range of 4–8, then eluted with 1 M HNO3 in acetone. The effect of major cations and anions of the natural water samples on the sorption of metal ions has been also investigated. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The present method was found to be applicable to the preconcentration of Cu, Mn, Co, Cd, Pb, Ni and Cr in natural water samples with good results such as R.S.D. from 3 to 8% (N=10) and detection limits under 70 ng l−1.  相似文献   

12.
A viscose-rayon-based activated carbon cloth (ACC) was electrochemically oxidized to enhance its cation sorption capacity for comparison with as-received ACC. The ACCs were characterized by sodium capacity measurement, pH titration, zeta potential measurement, elemental analysis, Brunauer-Emmet-Teller surface area, and pore size distribution. Batch sorption experiments showed that electrochemically oxidized ACC (EO) is more effective for the removal of lead and copper ions compared to unoxidized ACC (UO) for both competitive and noncompetitive sorption. For electrochemically oxidized fibers the copper and lead sorption capacities of ACC increased 17 and 4 times, respectively, for noncompetitive sorption and 8.8 and 8.6 times, respectively, for competitive sorption. However, reduction in the sorption capacities for both metals was observed for the competitive sorption. The sorption of lead and copper onto EO was by ion exchange, while that onto UO was likely to be due to surface complex formation. The affinity order of the two metal ions sorbed by UO and EO is Pb(2+)>Cu(2+). The effect of pH on sorption isotherms indicated that metal uptake increased with an increase in solution pH.  相似文献   

13.
Goswami A  Singh AK 《Talanta》2002,58(4):669-678
A new chelating matrix has been prepared by immobilizing 1,8-dihydroxyanthraquinone (DHAQ) on silica gel modified with (3-aminopropyl)triethoxysilane. After characterizing the matrix with thermogravimetric analysis (TGA), cross polarization magic angle spinning (CPMAS) NMR and diffuse reflectance infrared fourier transformation (DRIFT) spectroscopy, it has been used to preconcentrate Pb(II), Cd(II) and Zn(II) prior to their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.0-7.5, 7.0-8.0 and 6.0-8.0 for Pb, Zn, and Cd, respectively. All the metal ions can be desorbed with 2 mol l(-1) HCl/HNO(3). The sorption capacity of the matrix has been found to be 76.0, 180.0 and 70.2 mumol g(-1) for Pb, Zn and Cd, respectively, with the preconcentration factor of approximately 200. The limits upto which electrolytes NaNO(3), NaCl, NaBr, Na(2)SO(4), Na(3)PO(4) sodium citrate, EDTA, glycine and humic acid and cations Ca(II), Mg(II), Cu(II), Co(II), Ni(II), Mn(II) Al(III), Cr(III) and Fe(III) can co-exist with the metal ions during their sorption without any adverse effect are reported. The lowest concentration of metal ions for quantitative recovery is 5.0 ng ml(-1) The simultaneous enrichment and determination of all the metals is possible if total load of metal ions is less than sorption capacity. The flame AAS was used to determine these metal ions in underground, tap and river water samples (relative standard deviation (R.S.D.)相似文献   

14.
Sorption of metal ions on oxide/hydroxide surfaces mediates the fate and transport of these ions in many natural systems. These metallic ions often exist in bulk in the aqueous phase as complexes with inorganic and organic ligands. In the present study, we investigated the sorption properties of manganese dioxide in the presence of phosphate which is thought to be one of the most important complex forming species. The surface area, point of zero charge and structural morphology of the solid manganese dioxide were determined. Cd(2+) sorption studies were carried out on manganese dioxide as a function of pH, temperature and phosphate concentration. Cd(2+) sorption increased with increasing pH, temperature and phosphate concentration. It was found that phosphate formed both outer and inner sphere complexes via metal and ligand-like adsorption. The Langmuir equation was applied to describe the data and from the constants of this equation different thermodynamic parameters such as DeltaH(0), DeltaS(0) and DeltaG(0) were evaluated.  相似文献   

15.
16.
A porous bilayered open coordination polymer [Zn(4,4'-bpy)(2)(FcphSO(3))(2)](n) (1; FcphSO(3)Na=m-ferrocenyl benzenesulfonate), has been assembled from Zn(NO(3))(2), m-ferrocenyl benzenesulfonate, and the bridging ligand 4,4'-bipyridine (4,4'-bpy). Ion-exchange induced products [Cd(0.6)Zn(0.4)(4,4'-bpy)(2)(FcphSO(3))(2)](n) (2), [Zn(0.75)Pb(0.25)(4,4'-bpy)(2)(FcphSO(3))(2)](n) (3), and [Cu(0.5)Zn(0.5)(4,4'-bpy)(2)(FcphSO(3))(2)](n) (4) could be obtained directly by suspending a big single crystal of 1 into concentrated solutions of Cd(NO(3))(2), Pb(NO(3))(2), and Cu(NO(3))(2), respectively. Most importantly, the big single crystal of 1 could be partly regenerated after immersion into concentrated aqueous solutions of Zn(NO(3))(2). On the other hand, powdered 1 could also be used as a metal ion adsorbent because of the well-defined pore size and pore shape. Ion exchange takes place along with the process of ion sorption. The big single crystal of 1 removes harmful metal ions by means of ion exchange, whereas powdered 1 removes toxic metal ions mainly through ion sorption. Also, compound 1 could be employed as a multi-ion analysis fluorescent probe to detect dangerous metal ions, such as Pb(2+), Cd(2+), Ag(+), and Cu(2+). The compounds described in this study may have potential applications in the design of new molecular devices.  相似文献   

17.
A simple and reliable method has been developed using polymeric material containing phthalic acid as a chelating agent to concentrate ultratrace amounts of lead ions in aqueous solutions. After characterization by CHN, IR, and thermal studies, the static and dynamic sorption behavior of Pb(II) ions onto new synthetic resin has been investigated. The sorption has been optimized with respect to pH, shaking speed, and contact time between the two phases. Maximum sorption is achieved from solution of pH 5-8 after 10 min agitation time. The lowest concentration for quantitative recovery is 5.8 ng cm(-3) with a preconcentration factor of approximately 850. The kinetics of sorption follows the first-order rate equation with the rate constant k=0.58+/-0.04 min(-1). The variation of the equilibrium constant K(c) with temperature between 10 and 50 degrees C yields values of DeltaH, 52.4+/-1.65 kJmol(-1), DeltaS, 186+/-5.21 Jmol(-1)K(-1), and DeltaG(303K), -4.15+/-0.002 kJmol(-1). The sorption data of Pb(II) ions in the concentration range from 2.41x10(-6) to 1.44x10(-4) molL(-1) follows the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms at all temperatures investigated. The sorption of Pb(II) ions onto synthesized resin in the presence of common anions and cations has also been measured. The possible sorption mechanism of Pb(II) ions onto phthalic acid modified XAD-16 is also discussed. The sorption procedure is utilized to preconcentrate Pb(II) ions prior to their determination in automobile exhaust particulates by atomic absorption spectrometry using direct and standard addition methods.  相似文献   

18.
Carbon dioxide (CO(2)) adsorption capacities of several hydroxy metal carbonates have been studied using the state-of-the-art Rubotherm sorption apparatus to obtain adsorption and desorption isotherms of these compounds up to 175 bar. The carbonate compounds were prepared by simply reacting a carbonate (CO(3)(2-)) solution with solutions of Zn(2+), Zn(2+)/Mg(2+), Mg(2+), Cu(2+)/Mg(2+), Cu(2+), Pb(2+), and Ni(2+) metal ions, resulting in hydroxyzincite, hydromagnesite, mcguinnessite, malachite, nullaginite, and hydrocerussite, respectively. Mineral compositions are calculated by using a combination of powder XRD, TGA, FTIR, and ICP-OES analysis. Adsorption capacities of hydroxy nickel carbonate compound observed from Rubotherm magnetic suspension sorption apparatus has shown highest performance among the other components that were investigated in this work (1.72 mmol CO(2)/g adsorbent at 175 bar and 316 K).  相似文献   

19.
A new co-precipitation method was developed to separate and pre-concentrate Fe(3+), Cu(2+), Cr(3+), Zn(2+), and Pb(2+) ions using an organic co-precipitant, 3-benzyl-4-p-nitrobenzylidenamino-4,5-dihydro-1,2,4-triazole-5-on (BPNBAT) without adding any carrier element, following flame atomic absorption spectrometric (FAAS) determinations. Effect of some analytical conditions, such as pH of the solution, quantity of the co-precipitant, standing time, centrifugation rate and time, sample volume, and interference of concomitant ions were investigated over the recovery yields of the metal ions. The recoveries of the analyte ions were in the range of 95-102%. The detection limits, corresponding to three times the standard deviation of the blank, were found to be in the range of 0.3-2.0 microg L(-1). The precision of the method, evaluated as the relative standard deviation (R.S.D.) obtained after analyzing a series of 10 replicates, was between 1.6% and 6.0% for the trace metal ions. The method was validated by analyzing two certified reference materials and spiked addition. The proposed procedure was applied for the trace metal ions in some environmental samples.  相似文献   

20.
An investigation on the complex formation equilibria between divalent metal ions Me (with Me=Mn, Co, Ni, Cu, Cd, and Pb) and phytic acid (H(12)L) is presented. Experiments were performed through a potentiometric methodology by measuring, at 25 degrees C, the proton and, in some cases (Cu(2+), Cd(2+), and Pb(2+)), also the metal ion activity at equilibrium in solutions containing, besides the metal and the ligand, 3 M NaClO(4) as the ionic medium. Unhydrolyzed solutions of the metal ion at millimolar concentration levels were titrated with solutions of about 10 mM sodium phytate, until the formation of a solid phase took place (always at pH approximately 2.5, except in the case of Cu(2+), which formed soluble complexes up to pH approximately 3.3). Coulometry was employed to produce very dilute solutions of either Cu(2+), Cd(2+), or Pb(2+) of accurately known composition. The emf data were explained by assuming, in the acidity interval explored, the formation of the complexes of general stoichiometry MeH(5)L(5-) and Me(2)H(3)L(5-). Coordination compounds in the solid state were also synthesized and characterized by elemental analysis, thermal analysis, and ICP spectroscopy. The solids had a general stoichiometry Me(6)H (t)LCl (t). x H(2)O, with the following t and x values for each metal investigated: Me ( t; x) = Mn (4; 2); Co (4; 2); Ni (4; 2); Cu (2; 2.5); Zn (2; 1); Sn (6; 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号