首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired BornInfeld(EiBI)theory.In order to localize fermion on the brane,it needs to be considered the Yukawa coupling between the fermion and the background scalar field.In our models,since the background scalar field has kink,double kink,or anti-kink solution,the system has rich resonant Kaluza-Klein(KK)modes structure.The massive KK fermionic modes feel a volcano potential,which result in a fermionic zero mode and a set of continuous massive KK modes.The inner structure of the branes and a free parameter in background scalar field influence the resonant behaviors of the massive KK fermions.  相似文献   

2.
We investigate the possibility of localizing various matter fields on a bent AdS4 (dS4) thick brane in AdS5. For spin 0 scalar field, we find a massless zero mode and an excited state which can be localized on the bent brane. For spin 1 vector field, there is only a massless zero mode on the bent brane. For spin 1/2 fermion field, it is shown that, in the case of no Yukawa coupling of scalar-fermion, there is no existence of localized massless zero mode for both left and right chiral fermions. In order to localize massless fermions, some kind of Yukawa coupling must be included. We study two types of Yukawa couplings as examples. Localization property of chiral fermions is related to the parameters of the brane model, the Yukawa coupling constant and the cosmological constant of the 4-dimensional space–time.  相似文献   

3.
In this work we examine a five-dimensional brane-world model with brane structure driven by a real scalar field. From the deformation of a kink-like defect we find a new class of brane solutions containing internal structures which have implications for the way the background space-time is constructed and the way its curvature behaves. Initially, for spin 0 scalar field, we find a zero mode which can be localized on the deformed brane. However, this result can change by the gravitational interaction with the brane internal structure. Analyzing the massive modes of the scalar field, using two different methods, we find resonance structures similar to those found in the study of gravity localization. The main objective here is to observe the contributions of the deformation procedure to the resonances and to the well known field localization methods.  相似文献   

4.
Bouncing branes     
We investigate (4+1)- and (5+0)-dimensional gravity coupled to a non-compact scalar field sigma-model in the context of a single-brane-world scenario with separable metric and a bulk fluid. We briefly discuss the standard cosmological solutions and the family of warp factors (which includes both the original Randall–Sundrum [Phys. Rev. Lett. 83 (1999) 3370, hep-ph/9905221; Phys. Rev. Lett. 83 (1999) 4690, hep-th/9906064] solution and the solution of Kachru, Schulz and Silverstein [H.A. Chamblin, H.S. Reall, Nucl. Phys. B 562 (1999) 133, hep-th/9903225; S. Kachru, M. Schulz, E. Silverstein, Phys. Rev. D 62 (2000) 045021, hep-th/0001206]) for the case of a rolling fifth radius [C. Kennedy, E.M. Prodanov, Phys. Lett. B 488 (2000) 11, hep-th/0003299]. We show how this model can be adjusted so that it describes the standard cosmology on a self-tuning domain wall (with static fifth radius) [C. Kennedy, E.M. Prodanov, hep-th/0010202] and we discuss the solutions. Searching for a possible relation to the negative Euclidean stress energy, appearing in the Giddings and Strominger's axion induced topology change in quantum gravity and string theory [S.B. Giddings, A. Strominger, Nucl. Phys. B 306 (1988) 890], we modify the non-compact sigma-model into a single-field model (with a rolling fifth radius, separable metric, and no bulk fluid) for the more general case of a brane with non-zero curvature parameter. We find a solution (with a Kachru–Schulz–Silverstein warp factor [Phys. Rev. D 62 (2000) 045021, hep-th/0001206]), representing a Tolman wormhole for a brane with Lorentz metric and for a brane with positive definite metric.  相似文献   

5.
In this paper, we use the result in [C.Y. Sun and D.H. Zhang, arXiv:astro-ph/0510709] to calculate the non-Gaussianity of the racetrack models in [J.J. Blanco-Pillado, et al., JHEP 0411 (2004) 063; arXiv:hep-th/0406230] and [J.J. Blanco-Pillado, et al., arXiv:hep-th/0603129]. The two models give different non-Gaussianities. Both of them are reasonable. However, we find that, for multi-field inflationary models with the non-trivial metric of the field space, the condition of the slow-roll cannot guarantee small non-Gaussianities.  相似文献   

6.
In this work we investigate the issue of fermion localization and resonances in (4,1)-deformed branes constructed with one scalar field coupled with gravity. Such models provide us branes with internal structures that turns the gravitational interaction more effective for fermions aside the brane, increasing their lifetime. The coupling between the scalar field and spinors is a necessary condition for fermions to be localized on such branes. After performing a chiral decomposition of the five-dimensional spinor we found resonances with both chiralities. The correspondence between the spectra for left and right chirality is guaranteed and Dirac fermions are realized on the brane.  相似文献   

7.
Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal -product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. García-Compeán, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal -product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables.  相似文献   

8.
We study QED3 with magnetic-like defects using the Julia–Toulouse condensation mechanism (JTM) introduced in [F. Quevedo, C.A. Trugenberger, Nucl. Phys. B 501 (1997) 143, arXiv:hep-th/9604196]. By a careful treatment of the symmetries we suggest a geometrical interpretation for distinct debatable issues in the MCS-monopole system: (i) the induction of the non-conserved electric current together with the Chern–Simons term (CS), (ii) the deconfinement transition and, (iii) the computation of the fermionic determinant in the presence of Dirac string singularities. The JTM leads to proper interpretation of the non-conserved current as originating from Dirac brane symmetry breaking. The mechanism behind this symmetry breaking is clarified. The physical origin of the deconfinement transition becomes evident in the low energy effective theory induced by the JTM. The proper procedure to compute the fermionic determinant in the presence of Dirac branes will be presented. A byproduct of this approach is the possible appearance of statistical transmutation and the clarification for the different quantization rules for the topological mass.  相似文献   

9.
Two-dimensional quantum fields in electric and gravitational backgrounds can be described by conformal field theories, and hence all the physical (covariant) quantities can be written in terms of the corresponding holomorphic quantities. In this paper, we first derive relations between covariant and holomorphic forms of higher-spin currents in these backgrounds, and then, by using these relations, obtain higher-spin generalizations of the trace and gauge (or gravitational) anomalies up to spin 4. These results are applied to derive higher-moments of Hawking fluxes in black holes in a separate paper [S. Iso, T. Morita, H. Umetsu, Hawking radiation via higher-spin gauge anomalies, arXiv: 0710.0456 [hep-th]].  相似文献   

10.
Modified Gauss–Bonnet, i.e., f(G) gravity is a possible explanation of dark energy. Late time cosmology for the f(G) gravity non-minimally coupled with a free massless scalar field have been investigated in Ref. [S. Nojiri, S.D. Odintsov, P.V. Tretyakov, Phys. Lett. B 651 (2007) 224, arXiv:0704.2520 [hep-th]; S. Nojiri, S.D. Odintsov, P.V. Tretyakov, Progr. Theor. Phys. Suppl. 172 (2008) 81, arXiv:0710.5232]. In this Letter we generalize the work of Ref. [S. Nojiri, S.D. Odintsov, P.V. Tretyakov, Phys. Lett. B 651 (2007) 224, arXiv:0704.2520 [hep-th]; S. Nojiri, S.D. Odintsov, P.V. Tretyakov, Progr. Theor. Phys. Suppl. 172 (2008) 81, arXiv:0710.5232] by including scalar potential in the matter Lagrangian which is non-minimally coupled with modified Gauss–Bonnet gravity. Also we obtain the conditions for having a much more amazing problem than the acceleration of the universe, i.e. crossing of ω=−1, in f(G) non-minimally coupled with tachyonic Lagrangian.  相似文献   

11.
We discuss how to generate a dynamical Dp-brane with a topology of Rp-2×S2 from N D(p-2)-branes with Rp-2 topology with or without the presence of a constant RR(p+2)-form flux.This extends the previous work(Chen and Lu 2004 arXiv:hep-th/0405265)of generating a dynamical spherical D2 brane from N DO branes in a constant RR four-form flux to a general p.In particular,dynamically generating a higher dimensional brane from lower dimensional ones does not necessarily need the presence of a relevant RR background flux but needs excess energy,lending support to the spacetime uncertainty principle.The time evolution of the dynamical p-brane for a general p remains the same as for the p=2 case,however there is a class of spatial dependent Dp configurations when p≥3.Some of these spatial-dependent Dp brane configurations and their properties have been discussed previously which can also be obtained from the time-dependent one by euclideanizing the time.Properties of the spatial-dependent solutions and their relations to the corresponding brane-anti brane system are discussed.  相似文献   

12.
I do not agree with the authors of papers arXiv:0806.2184 and arXiv:0901.1023v1 (published in [Zhe Chang, Xin Li, Phys. Lett. B 668 (2008) 453] and [Zhe Chang, Xin Li, Phys. Lett. B 676 (2009) 173], respectively). They consider that “In Finsler manifold, there exists a unique linear connection – the Chern connection … It is torsion freeness and metric compatibility …”. There are well-known results (for example, presented in monographs by H. Rund and R. Miron and M. Anastasiei) that in Finsler geometry there exist an infinite number of linear connections defined by the same metric structure and that the Chern and Berwald connections are not metric compatible. For instance, the Chern's one (being with zero torsion and “weak” compatibility on the base manifold of tangent bundle) is not generally compatible with the metric structure on total space. This results in a number of additional difficulties and sophistication in definition of Finsler spinors and Dirac operators and in additional problems with further generalizations for quantum gravity and noncommutative/string/brane/gauge theories. I conclude that standard physics theories can be generalized naturally by gravitational and matter field equations for the Cartan and/or any other Finsler metric compatible connections. This allows us to construct more realistic models of Finsler spacetimes, anisotropic field interactions and cosmology.  相似文献   

13.
We revisit the constraints that the non-observation of ultra-high-energy photons due to the GZK cutoff can impose on models of Lorentz violation in photon propagation, following recent work by Maccione, Liberati and Sigl (2010) [arXiv:1003.5468] that carries further an earlier analysis by the present authors [J. Ellis et al., Phys. Rev. D 63 (2001) 12402, hep-th/0012216]. We argue that the GZK cutoff constraint is naturally evaded in the D-brane model of space–time foam presented recently by the present authors [J. Ellis et al., Phys. Lett. B 665 (2008) 412, arXiv:0804.3566], in which Lorentz-violating effects on photon propagation are independent of possible effects during interactions. We also note a novel absorption mechanism that could provide a GZK-like cutoff for photons in low-scale string models.  相似文献   

14.
We summarize our recent work [U. Reinosa, J. Serreau, JHEP 0711 (2007) 097 [arXiv:0708.0971 [hep-th]]; U. Reinosa, J. Serreau, JHEP 0607 (2006) 028; See also Nucl. Phys. A 785 (2007) 230; U. Reinosa, J. Serreau, in preparation] concerning the formulation of two-particle-irreducible (2PI) functional techniques for abelian gauge field theories.  相似文献   

15.
We investigate a recently proposed Higgs-like model [G. Gabadadze, R.A. Rosen, arXiv:0811.4423 [hep-th]], in the framework of a gauge-invariant but path-dependent variables formalism. We compute the static potential between test charges in a condensate of scalars and fermions. In the case of charged massive scalar we recover the screening potential. On the other hand, in the Higgs case, with a “tachyonic” mass term and a quartic potential in the Lagrangian, unexpected features are found. It is observed that the interaction energy is the sum of an effective-Yukawa and a linear potential, leading to the confinement of static charges.  相似文献   

16.
We review the effective potential due to massive bulk scalar fields in higher-dimensional warped brane models found in Flachi et al. (Quantum stabilization of moduli in higher dimensional brane models, arXiv:hep-th/0301, 2003) specializing it to a slice of AdS6 compactified on the circle. This model contains two moduli that parametrize the interbrane distance and the size of S 1, or equivalently the positions of the two branes. Their values determine the Planck/EW hierarchy, in a combination of large volume and redshift effects. It is found that the observed hierarchy is compatible with both moduli stabilized by the Casimir forces without fine-tuning (except for the one needed to match the cosmological constant). This contrasts with the Randall—Sundrum model, where gauge fields in the bulk are needed.  相似文献   

17.
In braneworld cosmology the expanding Universe is realized as a brane moving through a warped higher-dimensional spacetime. Like a moving mirror causes the creation of photons out of vacuum fluctuations, a moving brane leads to graviton production. We show that, very generically, Kaluza-Klein (KK) particles scale like stiff matter with the expansion of the Universe and can therefore not represent the dark matter in a warped braneworld. We present results for the production of massless and KK gravitons for bouncing branes in five-dimensional anti-de Sitter space. We find that for a realistic bounce the back reaction from the generated gravitons will be most likely relevant. This Letter summarizes the main results and conclusions from numerical simulations which are presented in detail in a long paper [M. Ruser and R. Durrer, arXiv:0704.0790].  相似文献   

18.
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.  相似文献   

19.
In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.  相似文献   

20.
We extend the method of Kerr/CFT correspondence recently proposed in arXiv:0809.4266 [hep-th] to the extremal (charged) Kerr black hole embedded in the five-dimensional Gödel universe. With the aid of the central charges in the Virasoro algebra and the Frolov–Thorne temperatures, together with the use of the Cardy formula, we have obtained the microscopic entropies that precisely agree with the ones macroscopically calculated by Bekenstein–Hawking area law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号