首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The couplings of the low scale type I see-saw model are severely constrained by the requirement of reproducing the correct neutrino mass and mixing parameters, by the non-observation of lepton number and charged lepton flavour violating processes and by electroweak precision data. We show that all these constraints still allow for the possibility of an exotic Higgs decay channel into a light neutrino and a heavy neutrino with a sizable branching ratio. We also estimate the prospects to observe this decay at the LHC and discuss its complementarity to the indirect probes of the low scale type I see-saw model from experiments searching for the μ→eγμeγ decay.  相似文献   

2.
There are three observables related to neutrino mass, namely the kinematic mass in direct searches, the effective mass in neutrino-less double beta decay, and the sum of neutrino masses in cosmology. In the limit of exactly degenerate neutrinos there are very simple relations between those observables, and we calculate corrections due to non-zero mass splitting. We discuss how the possible non-unitarity of the lepton mixing matrix may modify these relations and find in particular that corrections due to non-unitarity can exceed the corrections due to mass splitting. We furthermore investigate constraints from neutrino-less double beta decay on mass and mixing parameters of heavy neutrinos in the type I see-saw mechanism. There are constraints from assuming that heavy neutrinos are exchanged, and constraints from assuming light neutrino exchange, which arise from an exact see-saw relation. The latter has its origin in the unitarity violation arising in see-saw scenarios. We illustrate that the limits from the latter approach are much stronger. The drastic impact of the new limit on inverse neutrino-less double beta decay (ee→WW)(eeWW) is studied. We furthermore discuss neutrino mixing in case there is one or more light sterile neutrinos. Neutrino oscillation probabilities for long baseline neutrino oscillation experiments are considered, and the analogy to general non-unitarity phenomenology, such as zero-distance effects, is pointed out.  相似文献   

3.
4.
We consider tri-bimaximal lepton mixing within low-scale seesaw schemes where light neutrino masses arise from TeV scale physics, potentially accessible at the Large Hadron Collider (LHC). Two examples are considered, based on the A4A4 flavor symmetry realized within the inverse or the linear seesaw mechanisms. Both are highly predictive so that in both the light neutrino sector effectively depends only on three mass parameters and one Majorana phase, with no CP violation in neutrino oscillations. We find that the linear seesaw leads to a lower bound for neutrinoless double beta decay while the inverse seesaw does not. The models also lead to potentially sizeable decay rates for lepton flavor violating processes, tightly related by the assumed flavor symmetry.  相似文献   

5.
6.
We compute the mass spectrum of the fermionic sector of the Dirac–Kähler extension of the SM (DK-SM) by showing that there exists a Bogoliubov transformation that transforms the DK-SM into a flavor U(4)U(4) extension of the SM (SM-4) with a particular choice of masses and mixing textures. Mass relations of the model allow determination of masses of the 4th generation. Tree level prediction for the mass of the 4th charged lepton is 370 GeV. The model selects the normal hierarchy for neutrino masses and reproduces naturally the near tri-bimaximal and quark mixing textures. The electron neutrino and the 4th neutrino masses are related via a see-saw-like mechanism.  相似文献   

7.
We show that non-Hermitian and nearest-neighbor-interacting perturbations to the Fritzsch textures of lepton and quark mass matrices can make both of them fit current experimental data very well. In particular, we obtain θ23?45°θ23?45° for the atmospheric neutrino mixing angle and predict θ13?3°θ13?3° to 6° for the smallest neutrino mixing angle when the perturbations in the lepton sector are at the 20% level. The same level of perturbations is required in the quark sector, where the Jarlskog invariant of CP violation is about 3.7×10−53.7×105. In comparison, the strength of leptonic CP violation is possible to reach about 1.5×10−21.5×102 in neutrino oscillations.  相似文献   

8.
We consider charged lepton flavour violation (LFV) in the constrained minimal supersymmetric Standard Model, extended to include the see-saw mechanism with constrained sequential dominance (CSD), where CSD provides a natural see-saw explanation of tri-bimaximal neutrino mixing. When charged lepton corrections to tri-bimaximal neutrino mixing are included, we discover characteristic correlations among the LFV branching ratios, depending on the mass ordering of the right-handed neutrinos, with a pronounced dependence on the leptonic mixing angle θ13θ13 (and in some cases also on the Dirac CP phase δ).  相似文献   

9.
Recently, the LHCb and CDF Collaborations reported the measure of an unexpectedly large direct CP asymmetry in D meson decays. In this paper we ask if new physics associated with Partial Compositeness could plausibly explain this result. We find that Composite Higgs models with mass scale around 10 TeV can account for it, while marginally satisfying all other flavor constraints in the quark sector. The minimal framework is however inadequate in the lepton sector due to the strong constraint from μ→eγμeγ. This tension can be efficiently alleviated by realizing Partial Compositeness within Supersymmetry. The resulting models can saturate the CP asymmetry in D decays for superpartner masses close to the TeV scale and somewhat large A-terms. The supersymmetric realization of Partial Compositeness also offers a predictive and phenomenologically viable organizing principle for R-parity violation, and may result in very distinctive signatures at hadron colliders. With or without Supersymmetry, the neutron EDM is expected to be around the present experimental sensitivity.  相似文献   

10.
Based on a new approach to quark and lepton masses, where the mass spectra originate in vacuum expectation values of O(3)-flavor 1+51+5 (gauge singlet) scalars, a neutrino mass matrix of a new type is speculated. The mass matrix is described in terms of the up-quark and charged lepton masses, and, by assuming a special flavor basis, it can be accommodated to a nearly tribimaximal mixing without explicitly assuming a discrete symmetry. Quark mass relations are also discussed based on the new approach.  相似文献   

11.
We propose new classes of models which predict both tri-bimaximal lepton mixing and a right-angled Cabibbo–Kobayashi–Maskawa (CKM) unitarity triangle, α≈90°α90°. The ingredients of the models include a supersymmetric (SUSY) unified gauge group such as SU(5)SU(5), a discrete family symmetry such as A4A4 or S4S4, a shaping symmetry including products of Z2Z2 and Z4Z4 groups as well as spontaneous CP violation. We show how the vacuum alignment in such models allows a simple explanation of α≈90°α90° by a combination of purely real or purely imaginary vacuum expectation values (vevs) of the flavons responsible for family symmetry breaking. This leads to quark mass matrices with 1–3 texture zeros that satisfy the “phase sum rule” and lepton mass matrices that satisfy the “lepton mixing sum rule” together with a new prediction that the leptonic CP violating oscillation phase is close to either 0°, 90°, 180°, or 270° depending on the model, with neutrino masses being purely real (no complex Majorana phases). This leads to the possibility of having right-angled unitarity triangles in both the quark and lepton sectors.  相似文献   

12.
We extend the Type I seesaw and suggest a new   seesaw mechanism to generate neutrino masses within the left–right symmetric theories where parity is spontaneously broken. We construct a next to minimal left–right symmetric model where neutrino masses are determined irrespective of the B−LBL breaking scale and call it the new   seesaw mechanism. In this scenario B−LBL scale can be very low. This makes B−LBL gauge boson and the quasi-Dirac heavy leptons very light. These TeV scale particles could have large impact on lepton flavor and CP violating processes. We also shed light on the phenomenological aspects of the model within the reach of the LHC.  相似文献   

13.
14.
Four different neutrino mass sum-rules have been analyzed: these frequently arise in flavor symmetry models based on the groups A4A4, S4S4 or TT, which are often constructed to generate tri-bimaximal mixing. In general, neutrino mass can be probed in three different ways, using beta decay, neutrino-less double beta decay and cosmology. The general relations between the corresponding three neutrino mass observables are well known. The sum-rules lead to relations between the observables that are different from the general case and therefore only certain regions in parameter space are allowed. Plots of the neutrino mass observables are given for the sum-rules, and analytical expressions for the observables are provided. The case of deviations from the exact sum-rules is also discussed, which can introduce new features. The sum-rules could be used to distinguish some of the many models in the literature, which all lead to the same neutrino oscillation results.  相似文献   

15.
Considering the constraints from the experimental data on μ→eγμeγ, μ→3eμ3e, μ–eμe conversion, etc., we analyze the lepton flavor violating decays ?(J/Ψ,?(1S))→e+μ+τ)?(J/Ψ,?(1S))e+μ(μ+τ) in the scenarios of the minimal supersymmetric extensions of Standard Model with seesaw mechanism. Numerically, there is parameter space that the LFV processes of J/Ψ(?)→μ+τJ/Ψ(?)μ+τ can reach the upper experimental bounds, meanwhile the theoretical predictions on μ→eγμeγ, μ→3eμ3e, μ–eμe conversion satisfy the present experimental bounds. For searching of new physics, lepton flavor violating processes J/Ψ(?)→μ+τJ/Ψ(?)μ+τ may be more promising and effective channels.  相似文献   

16.
17.
The bipair neutrino mixing describes the observed solar and atmospheric mixings; however, it predicts vanishing reactor mixing angle, which is inconsistent with the observed data. We explore the ways of minimally modifying the bipair neutrino mixing by including charged lepton contributions. There are two categories of the bipair neutrino mixing which are referred to as case 1 and case 2. It turns out that, without arbitrary phases, a minimal modification is realized by just considering one e–τeτ contribution from the charged lepton sector in the case 1. On the other hand, not only e–τeτ contribution but also μ–τμτ contribution is required to realize a minimal modification in the case 2.  相似文献   

18.
19.
20.
We study tachyonic preheating associated with the spontaneous breaking of B−LBL, the difference of baryon and lepton number. Reheating occurs through the decays of heavy Majorana neutrinos which are produced during preheating and in decays of the Higgs particles of B−LBL breaking. Baryogenesis is an interplay of nonthermal and thermal leptogenesis, accompanied by thermally produced gravitino dark matter. The proposed mechanism simultaneously explains the generation of matter and dark matter, thereby relating the absolute neutrino mass scale to the gravitino mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号