首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Silver is a soft, lustrous metal with the highest electrical and thermal conductivity. Due to these properties, it has many applications as a precious material both in pure and alloy form (ornaments, jewellery, utensils, coins), but also in several technological fields, considering silver compounds (e.g. photography, electric and electronic industry). As a consequence of this, silver and its by‐products are regularly exposed to different atmospheres where a wide spectrum of agents (e.g. moisture, temperature, air pollutants, UV light) may cause metal corrosion and alteration of their surface characteristics and properties. The aim of this research is to deepen the potential and applicability of micro‐Raman spectroscopy as a surface‐sensitive technique to investigate the initial steps of atmospheric corrosion throughout the identification of surface chemical reactions and corrosion products formed on silver substrates. In a previous study, micro‐Raman analysis was carried out on pure silver powder compounds, selected among the most expected corrosion products occurring on silver substrates, in order to optimize experimental conditions and to obtain reference spectra [1]. Subsequently highly pure silver samples were exposed for 24 h to different controlled laboratory atmospheres (synthetic air, relative humidity, SO2, H2S), particularly focusing on sulfur containing gases, and the resulting surface reactions. The experiments highlight micro‐Raman spectroscopy as a highly surface‐sensitive technique enabling to detect both adsorbed chemical species and crystalline corrosion products of only several monolayers of thickness. Furthermore, these investigations could show the trends of primary and secondary corrosion mechanisms and their mutual interaction occurring on silver substrates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, FT‐Raman spectroscopy was explored as a fast and reliable screening method for the assessment of milk powder quality and the identification of samples adulterated with whey (1–40% w/w). Raman measurements can easily differentiate milk powders without the need of sample preparation, whereas the traditional methods of quality control, including high‐performance liquid chromatography, are laborious and slow. The FT‐Raman spectra of whole, low‐fat, and skimmed milk powder samples were obtained and distinguished from commercial milk powder samples. In addition, the exploratory analysis employing data from Raman spectroscopy and principal component analysis (PCA)allowed the separation of milk powder samples according to type,identifying differences between samples in the same group. Multivariate analysis was also developed to classify the adulterated milk powder samples using PCA and partial least squares discriminate analysis (PLS‐DA). The resulting PLS‐DA model correctly classified 100% of the adulterated samples. These results clearly demonstrate the utility of FT‐Raman spectroscopy combined with chemometrics as a rapid method for screening milk powder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The adsorption of aniline on a silver mirror was studied by surface‐enhanced Raman scattering (SERS) spectroscopy and density functional theory (DFT) calculation methods. The normal Raman and SERS spectra of pure aniline liquid and its solutions were recorded by a micro‐Raman spectrometer with excitation at 514.5 nm. Orientation of the aniline molecule adsorbed on the Ag mirror is discussed. The results indicate that pure aniline is adsorbed on the surface of the Ag mirror with a tilted orientation. The conformer with the nitrogen atom interacting with the metal surface would be dominant. DFT calculations further confirm the experimental results that charge transfer (CT) takes place from the highest occupied molecular orbital(HOMO) of aniline to the singly occupied molecular orbital (SOMO) of the silver surface. In this paper, the frontier molecular orbital theory has been successfully used to explore the interaction between the aniline molecule and the silver surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Several metallic sheets (about 1 mm thick) from the grave goods of the Royal Tomb 14 (Sipán, Peru) were characterised by energy dispersive X‐ray fluorescence analysis, using both a portable instrument and a capillary collimated spectrometer to investigate details, and micro‐Raman spectroscopy. The samples, belonging to the clothing of the warrior priest, resulted composed of thin copper sheets or tumbaga (natural alloy of copper, silver and gold). They were unearthed covered with typical green patina, formed during their long burial and characterised mainly by copper minerals, such as malachite, atacamite and magnetite identified with micro‐Raman spectroscopy. Due to deterioration of the original alloy, the artefacts analyzed in this work were rather fragile and could not resist hard polishing aimed at cleaning off corrosion products. So a non‐destructive qualitative EDXRF analysis was performed to identify the elemental composition of the metal alloy and a quantitative estimation was made applying the fundamental parameter method. The presence of superficial patina layer and the non‐homogeneous composition was also taken into account during calculation. The data obtained, compared to published results from several artefacts found in the nearby tombs, have been treated with a hierarchical statistic analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Commercially available extra virgin olive oils are often adulterated with some other cheaper edible oils with similar chemical compositions. A set of extra virgin olive oil samples adulterated with soybean oil, corn oil and sunflower seed oil were characterized by Raman spectra in the region 1000–1800 cm−1. Based on the intensity of the Raman spectra with vibrational bands normalized by the band at 1441 cm−1 (CH2), external standard method (ESM) was employed for the quantitative analysis, which was compared with the results achieved by support vector machine (SVM) methods. By plotting the adulterant content of extra virgin olive oil versus its corresponding band intensity in the Raman spectrum at 1265 cm−1, the calibration curve was obtained. Coefficient of determination (R2) of each curve was 0.9956, 0.9915 and 0.9905 for extra virgin olive oil samples adulterated with soybean oil, corn oil and sunflower seed oil, respectively. The mean absolute relative errors were calculated as 7.41, 7.78 and 9.45%, respectively, with ESM, while they were 5.10, 6.96 and 4.55, in the SVM model, respectively. The prediction accuracy shows that the ESM based on Raman spectroscopy is a promising technique for the authentication of extra virgin olive oil. The method also has the advantages of simplicity, time savings and non‐requirement of sample preprocessing; especially, a portable Raman system is suitable for on‐site testing and quality control in field applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The local structure of Ba(Ti0.70,Sn0.30)O3 (BSnT) was investigated using micro Raman spectroscopy from 80 to 500 K, which indicated three local phase sequences. The dielectric spectroscopy studies illustrated freezing of polar nano‐regions (PNR) below 95 K, merger of frequency dispersion at 220 K, and the origin of polar nano‐regions at 482 K. The temperature evolution of Raman spectra, basically integrated intensity, indicates non‐ergodic relaxor phase below 100 K, mature ergodic phase between 100 and 200 K, and the existence of ergodic polar clusters until 450 K, and above paraelectric phase. The observation of local phase sequences by Raman spectra are in agreement with dielectric spectroscopy anomalies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
High wavenumber (HW) Raman spectroscopy has weaker fluorescence background compared with fingerprint (FP) region. This study aims to evaluate the discrimination feasibility of nasopharyngeal non‐cancerous and nasopharyngeal cancer (NPC) tissue with both FP and HW Raman spectroscopy. HW Raman spectra of nasopharyngeal tissue were obtained for the first time. Raman spectra were collected to differentiate nasopharyngeal non‐cancerous (n = 37) from NPC (n = 41) tissues in FP (800–1800cm−1), HW (2700–3100cm−1), and integrated FP/HW region. First, to assess the utility of this method, the averaged Raman spectral intensities and intensity ratios of corresponding Raman bands were analyzed in HW and FP regions, respectively. The results show that intensities as well as the ratios of specific Raman peaks might be helpful in distinguishing nasopharyngeal non‐cancerous from NPC tissue with the HW Raman spectroscopy, as with FP Raman reported before. The multivariate statistical method based on the combination of principal component analysis–liner discriminant analysis (PCA‐LDA), together with leave‐one‐patient‐out, cross‐validation diagnostic algorithm, was used for discriminating nasopharyngeal non‐cancerous from NPC tissue, generating sensitivities of 87.8%, 85.4%, and 95.1% and specificities of 86.5%, 91.9%, and 89.2%, respectively, with Raman spectroscopy in the FP, HW, and integrated FP/HW regions. The posterior probability of classification results and receiver operating characteristic curves were utilized to evaluate the discrimination of PCA‐LDA algorithm, verifying that HW Raman spectroscopy has a positive effect on the differentiation for the diagnosis of NPC tissue by integrated FP/HW Raman spectroscopy. What's more, the potential of Raman spectroscopy used for differentiating different pathology NPC tissues was also discussed. The results demonstrate that both FP and HW Raman spectroscopy have the potential for diagnosis and detection in early nasopharyngeal carcinoma, and HW Raman spectroscopy may improve the discrimination of NPC tissue compared with FP region alone, providing a promising diagnostic tool for the diagnosis of NPC tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Mixed Cu–Ag alloys with different compositions have been produced and subjected to an accelerated sulphidation process which causes the development of a mixed sulphide‐rich corroded film on their surface. It was called tarnishing, that is, the formation of a blue‐brownish patina when Cu–Ag alloys are exposed in a sulfur‐containing atmosphere. The structures of the pristine alloys have been determined by the combined analytical techniques as scanning electron microscopy energy dispersive X‐ray microanalysis and X‐ray diffraction. The experimental conclusions confirmed the occurrence of micro phase separation with the formation of different dendritic domains of about 10 µm in width. The sulphidized samples were firstly investigated by optical microscopy and X‐ray diffraction in order to verify the homogeneity of the patina and to identify the different AgCuS phases appearing on the alloy surfaces. It was observed that, despite the inherent micro‐heterogeneity of the alloys, the sulphide layer was throughout uniform in composition at the micro‐scale. The complex scenario of the relative stability of all the various mixed sulphides involved was then explored by micro‐Raman spectroscopy (μ‐RS), pointing out that the Cu‐for‐Ag substitution in the crystal lattice of the mixed Ag–Cu sulphides caused a monotonous blue shift of the vibrational wavenumbers in Raman spectra. This study has unveiled microscopic details of the tarnishing process, furnishing an innovative, cheap and non‐destructive methodology based on μ‐Raman spectroscopy for the evaluation of the silver‐copper artefacts via the compositions of their corroded products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Chemical imaging method of vibrational spectroscopy, which provides both spectral and spatial information, creates a three‐dimensional (3D) dataset with a huge amount of data. When the components of the sample are unknown or their reference spectra are not available, the classical least squares (CLS) method cannot be applied to create visualized distribution maps. Raman image datasets can be evaluated even in such cases using multivariate (chemometric) methods for extracting the needed hidden information. The capability of chemometrics‐assisted Raman mapping is evaluated through the analysis of pharmaceutical tablets (considered as unknown) with the aim of estimating the pure component spectra based on the collected Raman image. Six chemometric methods, namely, principal component analysis (PCA), maximum autocorrelation factors (MAF), sample–sample 2D correlation spectroscopy (SS2D), self‐modeling mixture analysis (SMMA), multivariate curve resolution–alternating least squares (MCR‐ALS), and positive matrix factorization (PMF), were compared. SMMA was found to be the best choice to determine the number of components. MCR‐ALS and PMF provided the pure component spectra with the highest quality. MCR‐ALS was found to be superior to PMF in the estimation of Raman scores (which correspond to the concentrations) and yielded almost the same results as CLS (using the real reference spectra). Thus, the combination of Raman mapping and chemometrics could be successfully used to characterize unknown pharmaceuticals, identify their ingredients, and obtain information about their structures. This may be useful in the struggles against illegal and counterfeit products and also in the field of pharmaceutical industry when contaminants are to be identified. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectroscopy is structure sensitive non‐destructive method that allows observing the status of biological tissues with minimal impact. This method has a great potential in the diagnosis of various types of degenerative diseases including cancer damages. Near‐infrared Fourier transform (NIR‐FT)‐Raman (λex ~1064 nm), NIR‐visible (Vis)‐Raman (λex ~785 nm) and Vis‐Raman (λex ~532 nm) spectra of normal and colorectal carcinoma colon tissue samples were recorded in macroscopic mode at 10–20 randomly chosen independent sites. In the cases of NIR‐Vis‐ and Vis‐Raman spectra, enhanced resonance effects were observed for tissue chromophores absorbing in the visible area. Evident spectral differences were noticed for Raman spectra of normal colon tissue samples in comparison with abnormal samples. The average Raman spectra of colon tissue samples were analysed by principal component analysis (PCA) to discriminate normal and abnormal tissues. PCA of combined dataset containing Raman intensities of chosen NIR‐FT, NIR‐Vis or Vis‐Raman bands led to discrimination of normal and abnormal colon tissue samples. Therefore, combination of these three Raman methods can be helpful for recognizing cancer lesions in colon for diagnostic purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
显微拉曼光谱在碳素笔笔迹方面的研究   总被引:3,自引:0,他引:3  
本文研究了市场上常见的四种型号的碳素笔笔迹的拉曼光谱。研究证明:四种型号品牌的碳素笔其拉曼光谱有相似之处,但更有明显的不同;另外,同一型号不同批号也有区别。因此,可用拉曼光谱对碳素笔墨汁进行鉴别识别。  相似文献   

13.
The vibrational properties of both wild‐type and selenomethionine (SeMet)‐substituted protein SOUL crystals have been investigated here by Raman spectroscopy. Several Raman peaks observed in the spectra of methionine and SeMet were identified as specific markers. The unambiguous assignment of these peaks has been inferred by comparing the experimental Raman spectra of the pure amino acids, recorded in solid state and in aqueous solution, and the Raman intensities computed using quantum chemical calculations. Moreover, a quantitative evaluation of the relative amount of SeMet replacement in the crystals of protein SOUL labelled with SeMet has been estimated through the ratio between the Raman intensities of marker peaks. These results offer evidence of the potential of Raman microscopy as a reliable and non‐invasive tool for novel in‐depth structural investigations in biocrystallography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A recently developed variant of spatially offset Raman spectroscopy (SORS) for the non‐invasive analysis of thin painted layers, micro‐SORS, has been applied, for the first time, to real objects of Cultural Heritage – namely painted sculptures and plasters. Thin layers of paint originating from multiple restoration processes often applied over many centuries have been analysed non‐destructively using micro‐SORS to depths inaccessible to, or unresolvable into separate layers, by conventional confocal Raman microscopy. The concept has been demonstrated on several artistic artefacts of historical significance originating from Italy and dating from the medieval to the 18th century. The technique extends the depth applicability of Raman spectroscopy and with its inherently high chemical specificity that expands the portfolio of existing non‐destructive analytical tools in Cultural Heritage permitting to avoid cross‐sectional analysis often necessitated with this type of samples with conventional Raman microscopy. Currently, the method is non‐invasive only for artworks that can be placed under Raman microscope although there is a prospect for its use in a mobile system with largely removed restrictions on sample dimensions. © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd.  相似文献   

15.
Identification of the gasoline purity is important for quality control and detection of gasoline adulteration. Principal component analysis and Raman spectroscopy were used to authenticate gasoline adulterated with methyl tert‐butyl ether (MTBE) and benzene. Gasoline could be clearly distinguished from gasoline adulterated with MTBE and benzene by a plot of the first principal component (x‐axis) against the second principal component (y‐axis). And the radial basis function neural network was used for quantitative prediction of the volume percentages of MTBE and benzene in gasoline based on Raman Spectra. The correlation coefficient (r) and mean absolute percentage error between predictive values and spiked values were 0.9907 and 0.9934 and 15.73 and 8.19%, respectively. Moreover, the Raman spectra of the samples were obtained with a portable Raman spectrometer. Therefore, the method is simple, effective, fast, does not require sample pre‐processing, and is promising for rapid gasoline detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In the present study, an application of a silver colloid substrate in order to obtain Fourier‐transform surface‐enhanced Raman (FT‐SER) spectra of natural historical dyes is presented. In detail, we collected a spectral database from solutions of pure dyes and then we carried out extractionless both hydrolysis and non‐hydrolysis FT‐SERS analyses on wool fibers previously dyed in our laboratory and on ancient textiles. The term ‘extractionless’ refers to a method of SERS analysis applied directly on the fiber, thus avoiding the extraction of dyes from textile samples. The combination of a low‐energy source of radiation, as in the FT‐Raman technique, with SER spectroscopy can bring the important advantage of reducing the fluorescence typical of ancient samples and organic dyes. In some historical textile samples, for which SER spectra by use of visible excitation could not be obtained, the FT‐SER spectrum of an iron‐gall dye was recorded without hydrolysis, while, with an HF hydrolysis pre‐treatment on ancient fibers, madder, lac dye and brazilwood were clearly recognized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We have investigated the potential of Raman spectroscopy with excitation in the visible spectral range (VIS Raman) as a tool for the classification of different vegetable oils and the quantification of adulteration of virgin olive oil as an example. For the classification, principal component analysis (PCA) was applied, where 96% of the spectral variation was characterized by the first two components. A significant similarity between sunflower oil and extra‐virgin olive oil was found using this approach. Therefore, sunflower oil is a potential candidate for adulteration in most commercially available olive oils. Beside the classification of the different vegetable oils, we have successfully applied Raman spectroscopy in combination with partial least‐squares (PLS) regression analysis for very fast monitoring of adulteration of extra‐virgin olive oil with sunflower oil. Different mixtures of extra‐virgin olive oil with three different sunflower oil types were prepared between 5 and 100% (v/v) in 5% increments of sunflower oil. While in the present context the adulteration usually refers to the addition of reasonable amounts of the adulterant (given the similarity with the basic product), we show that the technique proposed can also be used for trace analysis of the adulterant. Without using techniques like surface‐enhanced Raman scattering (SERS), a quantitative detection limit down to 500 ppm (0.05%) could be achieved, a limit irrelevant for adulteration in commercial terms but significant for trace analysis. The qualitative detection limit even was at considerably lower concentration values. Based on PCA, a clear discrimination between pure extra‐virgin olive oil and olive oil adulterated with sunflower oil was achieved. The adulterant content was successfully determined using PLS regression with a high correlation coefficient and small root mean‐square error for both prediction and validation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A comparative, temperature‐dependent (80–500 K at 5 K intervals), micro‐Raman spectroscopic study of 300 and 50 nm diameter ceramic BaTiO3 nanoparticles was carried out with the purpose of elucidating the nanoparticle size effect on the temperature dependence of the polar and non‐polar phonons. A method for calibrating Raman intensities, along with an iterative spectral fitting algorithm, is proposed for concurrent Raman band position and intensity analysis, increasing the analytical abilities of single temperature point Raman spectroscopy. The 300 nm particles exhibit all three phase transitions, whereas the 50 nm particles do not show evidence of these phase transitions in the same temperature range. The Curie temperature appears to be a phonon converging point, irrespective of the phonon symmetry. An attempt was made to qualitatively relate the temperature‐dependent Raman spectra to complimentary non‐spectroscopic methods, such as heat capacity and X‐ray diffraction studies. The study proves that the temperature‐dependent behavior of the polar phonon, 265 cm−1, can be utilized as a sensitive phase transition probe. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
为实现橄榄油中掺伪油类型的识别和掺伪量预测,对掺入葵花籽油、大豆油、玉米油的橄榄油共117个样品进行拉曼光谱检测,并用基于多重迭代优化的最小二乘支持向量机模型对掺入油的类型进行识别,综合识别率为97%。同时分别采用最小二乘支持向量机、人工神经网络模型、偏最小二乘回归建立橄榄油中葵花籽油、大豆油、玉米油含量的拉曼光谱定标模型,结果显示最小二乘支持向量机具有最优的预测效果,其预测均方根误差(RMSEP)在0.007 4~0.014 2之间。拉曼光谱结合最小二乘支持向量机可为橄榄油掺伪检测提供一种精确、快速、简便、无损的方法。  相似文献   

20.
Single‐cell micro‐Raman spectroscopy has the potential to become a powerful, new cytometric approach for discriminating between cell types and identifying subpopulations of cells based on differences in the intrinsic, molecular content of the cells. Despite the considerable progress in demonstrating many biomedical applications of single‐cell Raman spectroscopy, an unresolved issue with this method is the inconsistent manner in which the technique has been applied experimentally to acquire spectra from a cell, which can potentially lead to irreproducible and inconsistent results from study to study. Specifically, the problem pertains to the validity of using micro‐Raman spectroscopy to sample an arbitrary fraction of the cell volume and to claim that the resulting spectrum represents the entire cell volume. In this study, we investigate the effect of sample size (i.e. the number of Raman spectra acquired from distinct locations in a cell) on the ability to generate a Raman spectrum that accurately describes the total molecular content of the cell. Furthermore, we demonstrate that a minimum sample size of Raman spectra acquired from a cell can be used in place of a full hyperspectral Raman image to achieve the same degree of discrimination between different cell populations. Lymphocytes exposed to the chemotherapy drug, doxorubicin, at different concentrations and exposure times are used as a model biological system in this study. This work demonstrates the importance of adequate spectral sampling and presents an approach for determining the minimum sample size needed to reproduce a Raman spectrum of a whole cell, which are expected to impact future single‐cell Raman spectroscopy studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号