首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We investigated the interfacial structures of various aromatic (each compound contains one or two phenyls) di‐α‐amino ( L1 – L3 ) and α‐amino‐α‐hydroxyphosphinic ( L4 – L6 ) acids immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution using surface‐enhanced Raman scattering (SERS). These structures were compared to those on a colloidal silver surface to determine the relationship between adsorption strength and geometry. The presence of an enhanced ν19a ring band in the SERS spectra of L6 , L2 , and L3 on the electrode indicated that the benzene rings of those molecules interact with the electrode surface through localized CC bond(s). We observed significant band broadening of the benzene ring modes for all α‐hydroxyphosphinic acids on both substrates, except for L1 deposited onto the electrode surface. This suggests the possibility of direct interaction between the ring and Ag, although the benzene ring–surface π overlap is weaker for the colloidal silver than for the Ag electrode. The downward shift in wavenumber and alternations in the enhancement of a ν12 ring band indicate a general increase of tilt angle on both silver substrates in the order L3 < L4 < L5 < L6 . The altered enhancement of the bands due to the vibrations of the  NH2 and O PO fragments, a finding observed on both silver substrates, strongly suggests that the groups interact with different strength and geometry with these substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a colloidal assembly of apparently randomly adhering Ag spheres with diameters of approximately 20 – 25 nm. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces were analyzed in this study. Briefly, it was shown that Pip, in generally in vertical orientation, and Thi, in the edge‐on position, relative to the colloidal Ag surface interacted with this surface through their lone electron pairs on the nitrogen and sulfur atoms, respectively. The imide bond of the X‐Pro peptide linkage and the guanidine group of Arg were involved in the adsorption process. In addition, it was demonstrated that the specific differences in the amino acid sequences slightly influenced the mode of adsorption. For example, Aaa in Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK and D‐Phe (vertical with respect to the colloidal Ag surface) in [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK assisted in the adsorption of these peptides onto the colloidal Ag particles. To discuss these spectral alterations due to the different surface adsorption mechanisms of these peptides, the spectral changes were analyzed according to the adsorption process and Fourier‐transform‐Raman spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Graphite oxide (GO) was successfully silylated by 3‐mercaptopropyltrimethoxysilane. The surface‐enhanced Raman scattering spectrum of the silylated GO sheets sandwiched between colloidal silver nanoparticles and silver piece is presented. The Raman signal shows a 104 enhancement compared to that of bulk GO. The large Raman enhancement is most likely a result of electromagnetic (EM) coupling between the colloidal silver nanoparticles (localized surface plasmon) and the silver piece (surface plasmon polariton), creating large localized EM fields at their interface, where the silylated GO sheets reside in this sandwich architecture. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Adsorption of 4,4′‐thiobisbenzenethiol (4,4′‐TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface‐enhanced Raman scattering (SERS) for the first time, which indicates that 4,4′‐TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H‐atoms of the S H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4′‐TBBT in the two systems. It is inferred from the SERS signal that the two aromatic rings in 4,4′‐TBBT molecule are parallel to the colloidal silver surface as seen from the disappearance of νC H band (3054 cm−1), which is a vibrational mode to be used to determine the orientation of a molecule on metals according to the surface selection rule, while on the roughened silver electrode surface they are tilted to the surface as seen from the enhanced signal of νC H. The orientation of the C‐S bond is tilted with respect to the silver surface in both cases as inferred from the strong enhancement of the νC S. SERS spectra of 4,4′‐TBBT on the roughened silver electrode with different applied potentials reveal that the enhancement of 4,4′‐TBBT on the roughened silver electrode surface may be related to the chemical mechanism (CM). More importantly, the adsorption of 4,4′‐TBBT on the silver electrode is expected to be useful to covalently adsorb metal nanoparticles through the free S H bond to form two‐ or three‐ dimensional nanostructures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Neurotensin (NT) is a naturally occurring neurotransmitter that mediates the metabotropic seven‐transmembrane G protein‐coupled receptors, namely NTR1s, richly expressed on tumor surface. Therefore, mutated active molecular fragments of NT that possess selective antagonist or weak agonist properties and the high affinity to NTR1 have attracted considerable interest for use in thrombus, inflammation, and imaging/treatment of tumors. In this work, SERS spectra of three N‐terminal fragments of human NT (NT1‐6, NT1‐8, and NT1‐11) and six specifically mutated C‐terminal fragments of human NT, including NT8‐13, [Dab9]NT8‐13, [Lys8,Lys9]NT8‐13, [Lys8‐(®)‐Lys9]NT8‐13, [Lys9,Trp11,Glu12]NT8‐13, and NT9‐13, adsorbed onto nanometer‐sized colloidal silver particles in an aqueous solution at pH level of the solution 2 are presented. A comparison was made between the structures of the native and mutated fragments to determine how changes in peptide length and mutations of the structure influenced the NT adsorption properties. Based on the interpretation of the obtained data, we showed that all of the investigated NT fragments, excluding [Lys9,Trp11,Glu12]NT8‐13, tended to adsorb on the silver surface mainly through the L‐tyrosine residue and the carboxylate group. The Tyr ring lied more‐or‐less flat on the silver surface. The hydrogen atom from the phenol group dissociated upon binding. On the other hand, [Lys9,Trp11,Glu12]NT8‐13 bound to this substrate through the close to vertical co‐pyrrole ring of the indole ring (Trp11) and –COO . Comparison of the presented data with those obtained earlier for NT allows to suggest that in the case of naturally occurring neurotensin, both Tyr residues together with the carboxylate group play crucial role in the binding to the nanometer‐sized colloidal silver particles. This geometry of binding forces the NT molecule to lay flat on the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This work used infrared absorption and Raman spectroscopy to determine the structure of seven modified fragments (residues 6–14 of the polypeptide chain) of bombesin (BN6–14). The peptides studied are cyclo[D ‐Phe6, His7, Leu14]BN6–14, [D ‐Phe6, Leu‐NHEt13, des‐Met14]BN6–14, [D ‐Phe6, Leu13‐®‐p‐chloro‐Phe14]BN6–14, [D ‐Phe6, β‐Ala11, Phe13, Nle14]BN6–14, [D ‐Tyr6, β‐Ala11, Phe13, Nle14]BN6–14, [D ‐Tyr6, β‐Phe11, Phe13, Nle14OH]BN6–14 and [D ‐Cys6, Asn7, D ‐Ala11, Cys14]BN6–14. These peptides are potent bombesin agonists useful in the treatment of tumors. Surface‐enhanced Raman scattering (SERS) spectroscopy was also used to examine the behavior of these molecules on an electrochemically roughened silver surface. The SERS spectra reveal that substituting native amino acids in these molecules with synthetic ones changes their adsorption state slightly on an electrochemically roughened surface of silver. The peptides [D ‐Tyr6, β‐Ala11, Phe13, Nle14]BN6–14 and [D ‐Tyr6, β‐Phe11, Phe13, Nle14OH]BN6–14 tend to adsorb strongly on this surface via C fragment (∼1400 cm−1). The observed medium enhancement of the Trp8 residue and amide bond Raman signals indicate further interactions between these fragments and the surface. [D ‐Phe6, Leu‐NHEt13, des‐Met14]BN6–14 and [D ‐Cys6, Asn7, D ‐Ala11, Cys14]BN6–14 are shown to be coordinated to the silver through  CONH , CO, and the indole ring. The strongest SERS bands (∼1506, ∼1275, ∼1149, and ∼1007 cm−1) of [D ‐Phe6, Leu13‐®‐p‐chloro‐Phe14]BN6–14 and [D ‐Phe6, β‐Ala11, Phe13, Nle14]BN6–14 suggest that these two peptides bind to the silver via Trp8 and  CONH . In the case of cyclo[D ‐Phe6, His7, Leu14]BN6–14, the formation of a peptide/Ag complex is confirmed by the strong SERS bands involving Trp8 and  CONH vibrations, which are accompanied by a SERS signal due to the CO vibrations. For these analogs, the relative potency for inhibition of binding of 125I‐[Tyr4]BN to rat pancreas acini cells was correlated with the behavior of the amide bond on the silver surface, while the contribution of the structural components to the ability to interact with the rGRP‐R was correlated with the SERS patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
许莉莉  方炎 《光散射学报》2004,16(3):215-220
本文报道了温度对银胶体系中的苯甲酸衍生物(PHBA,MHBA,SA)水溶液的表面增强拉曼散射(SERS)的影响。将苯甲酸衍生物水溶液与银溶胶混合后加热至沸腾,再冷却至室温(20℃左右)后测得SERS谱。将其与未加热混合液的SERS谱相比较发现这些分子加热前后的SERS谱中存在许多明显的差异。这种差异可能来自于苯甲酸衍生物在银胶颗粒表面的吸附方式的变化以及吸附的分子与溶液中残留的柠檬酸根在加热作用下发生的相互影响共同作用的结果。  相似文献   

11.
Surface-enhanced Raman scattering (SERS) spectra of 2-cyanopyridine (2 CP) adsorbed on silver colloidal particles have been investigated. The prominent SERS bands are observed at 556, 612, 778, 1002, 1060, 1072, 1150 and 1240 cm−1. The absolute enhancement factor of the Raman signals in SERS studies has been estimated to be of the order of 102–105 for various bands. The 2CP molecules have been ascribed to adsorb on colloidal particles in standing up fashion.  相似文献   

12.
We report the observation of large surface‐enhanced Raman scattering (SERS) (106) for 4‐tert‐butylpyridine molecules adsorbed on a silver electrode surface in an electrochemical cell with electrode potential set at − 0.5 V. A decrease in electrode potential to − 0.3 V was accompanied by a decrease in relative intensities of the vibrational modes. However, there were no changes in vibrational wavenumbers. Comparison of both normal solution Raman and SERS spectra shows very large enhancement of the intensities of a1, a2, and b2 modes at laser excitation of 488 nm. Enhancement of the non‐totally symmetric modes indicates the presence of charge transfer as a contributor to the enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we investigate the solvation of silver bis(trifluoromethylsulfonyl)imide salt (AgTFSI) in 1‐ethyl‐3‐methylimidazolium TFSI [EMI][TFSI] ionic liquid by combining Raman and infrared (IR) spectroscopies with density functional theory (DFT) calculations. The IR and Raman spectra were measured in the 200–4000 cm−1 spectral region for AgTFSI/[EMI][TFSI] solutions with different concentrations ([AgTFSI] <0.2 mole fraction). The analysis of the spectra shows that the spectral features observed by dissolution of AgTFSI in [EMI][TFSI] solution originate from interactions between the Ag+ cation and the first neighboring TFSI anions to form relatively stable Ag complexes. The ‘gas phase’ interaction energy of a type [Ag(TFSI)3]2− complex was evaluated by DFT calculations and compared with other interionic interaction energy contributions. The predicted spectral signatures because of the [Ag(TFSI)3]2− complex were assessed in order to interpret the main IR and Raman spectral features observed. The formation of such complexes leads to the appearance of new interaction‐induced bands situated at 753 cm−1 in Raman and at 1015 and 1371 cm−1 in IR, respectively. These specific spectral signatures are associated with the ‘breathing’ mode and the S–N–S and S–O stretching modes of the TFSI anions engaged in the complex. Finally, all these findings are discussed in terms of interaction mechanisms enabling the electrodeposition characteristics of silver from AgTFSI/[EMI][TFSI] IL‐based electrolytic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The Raman and infrared spectra of fac ‐tris(2‐phenylpyridinato‐N,C2′)iridium(III), Ir(ppy)3 and surface‐enhanced resonance Raman spectra of bis(2‐phenyl pyridinato‐) (2,2′bipyridine) iridium (III), [Ir(ppy)2 (bpy)]+ cation were recorded in the wavenumber range 150–1700 cm−1, and complete vibrational analyses of Ir(ppy)3 and [Ir(ppy)2 (bpy)]+ were performed. Most of the vibrational wavenumbers were calculated with density‐functional theory agree with experimental data. On the basis of the results of calculation and comparison of the spectra of both complexes and their analogue [Ru(bpy)3]2+, we assign the vibrational wavenumbers for metal–ligand modes; metal–ligand stretching wavenumbers are 277/307 and 261/236 cm−1 for Ir(ppy)3, and 311/324, 257/270, 199/245 cm−1 for [Ir(ppy)2 bpy]+. Surface‐enhanced Raman scattering spectra of [Ir(ppy)2 bpy]2+ were measured at two wavelengths on the red and blue edges of the low‐energy metal‐to‐ligand charge‐transfer band. According to the enhanced Raman intensities for the vibrational modes of both ligands ppy and bpy, the unresolved charge‐transfer band is deduced to consist of charge‐transfer transitions from the triplet metal to both ligands ppy and bpy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The single‐crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2, respectively, and the non‐aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise alternating layers of [Sb(OH)6]−1 octahedra and mixed [M(H2O)6]+2/[Sb(OH)6]−1 octahedra. Mopungite comprises hydrogen‐bonded layers of [Sb(OH)6]−1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb O symmetric stretch of the [Sb(OH)6]−1 octahedron, which occurs at approximately 620 cm−1. The Raman spectrum of mopungite showed many similarities to spectra of the di‐octahedral minerals, supporting the view that the Sb octahedra give rise to most of the Raman bands observed, particularly below 1200 cm−1. Assignments have been proposed on the basis of the spectral comparison between the minerals, prior literature and density functional theory (DFT) calculations of the vibrational spectra of the free [Sb(OH)6]−1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6‐31G(d) and lanl2dz for the Sb atom. The single‐crystal spectra showed good mode separation, allowing most of the bands to be assigned to the symmetry species A or E. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a highly specific electrochemically roughened SERS‐active Ag substrate characterized by the formation of a 50 – 150 nm Ag islands on its surface. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces and reorientation occurring over time of adsorption were analyzed in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectra in solid and 1 M solution of L ‐cysteine and surface‐enhanced Raman scattering (SERS) spectra of this molecule in the zwitterionic form, by using colloidal silver nanoparticles, have been recorded. Density functional theory with the B3LYP functional was used for the optimizations of the ground state geometries and simulation of the vibrational spectrum of this amino acid. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman and SERS vibrations and the corresponding assignments, as well as a comparison of force constants and geometrical parameters between the free zwitterion cysteine and the one in the presence of the colloidal silver nanoparticles, we can confirm the presence of gauche (PH) and trans (PN) rotamers in the solid state, the formation of a S S bond in the solution state, the dissociation of the peptide bond and mixing of rotamers because of the SERS effect, and the relative importance of the interaction of sulphyldryl, NH3+, and carboxylate groups with the metallic surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号