首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first synthesis of porous, optically active, magnetic Fe3O4@poly(N‐acryloyl‐leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3O4 NPs. The microspheres integrate three significant concepts, “porosity”, “chirality”, and “magneticity”, in one single microspheric entity. The microspheres consist of Fe3O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV‐vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g–1 and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc.

  相似文献   


2.
One‐pot synthesis of thermoresponsive magnetic composite microspheres with a poly(N‐isopropylacrylamide) (PNIPAM) shell and a Fe3O4 core is demonstrated. Temperature sensitivity of PNIPAM was adopted to design the novel synthesis pathway. The as‐prepared composite microspheres have an obvious core‐shell structure with a mean size of approximately 250 nm. The Fe3O4 core is approximately 5 nm and the thickness of the PNIPAM shell is approximately 10 nm. The content of Fe3O4 in the composite microspheres can be controlled by this method. The composite microspheres experience a swelling and shrinking process in water by adjusting the temperature below and above the lower critical solution temperature (LCST) around 32 °C. These microspheres also show fine response to an external magnetic field. This work presents a platform to synthesize organic/inorganic composite microspheres in a facile and efficient approach. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2702–2708  相似文献   

3.
A facile and effective approach to preparation of dual‐responsive magnetic core/shell composite microspheres is reported. The magnetite(Fe3O4)/poly(methacrylic acid) (PMAA) composite microspheres were synthesized through encapsulating γ‐methacryloxypropyltrimethoxysilane (MPS)‐modified magnetite colloid nanocrystal clusters (MCNCs) with crosslinked PMAA shell. First, the 200‐nm‐sized MCNCs were fabricated through solvothermal reaction, and then the MCNCs were modified with MPS to form active vinyl groups on the surface of MCNCs, and finally, a pH‐responsive shell of PMAA was coated onto the surface of MCNCs by distillation‐precipitation polymerization. The transmission electron microscopy (TEM) and vibrating sample magnetometer characterization showed that the obtained composite microspheres had well‐defined core/shell structure and high saturation magnetization value (35 emu/g). The experimental results indicated that the thickness and degree of crosslinking of PMAA shell could be well‐controlled. The pH‐induced change in size exhibited by the core/shell microspheres reflected the PMAA shell contained large amount of carboxyl groups. The carboxyl groups and high saturation magnetization make these microspheres have a great potential in biomolecule separation and drug carriers. Moreover, we also demonstrated that other magnetic polymeric microspheres, such as Fe3O4/PAA, Fe3O4/PAM, and Fe3O4/PNIPAM, could be synthesized by this approach. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
Magnetic poly(N‐propargylacrylamide) (PPRAAm) microspheres were prepared by the precipitation polymerization of N‐propargylacrylamide (PRAAm) in a toluene/propan‐2‐ol medium in the presence of magnetic nanoparticles (oleic acid‐coated Fe3O4). The effects of several polymerization parameters, including the polarity of the medium, polymerization temperature, the concentration of monomer, and the amount of magnetite (Fe3O4) in the polymerization feed, were examined. The microspheres were characterized in terms of their morphology, size, particle‐size distribution, and iron content using transmission and scanning electron microscopies (TEM and SEM) and atomic absorption spectroscopy (AAS). A medium polarity was identified in which magnetic particles with a narrow size distribution were formed. As expected, oleic acid‐coated Fe3O4 nanoparticles contributed to the stabilization of the polymerized magnetic microspheres. Alkyne groups in magnetic PPRAAm microspheres were detected by infrared spectroscopy. Magnetic PPRAAm microspheres were successfully used as the anchor to enable a “click” reaction with an azido‐end‐functionalized model peptide (radiolabeled azidopentanoyl‐GGGRGDSGGGY(125I)‐NH2) and 4‐azidophenylalanine using a Cu(I)‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition reaction in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

5.
D 4 ‐symmetric chiral hydrogen‐bonded cyclotetramers (see the structure in the picture) are present in the self‐assembled achiral title compound in the solid state. The unilayered network set up from the chiral “square” blocks is achiral as a consequence of the crystal symmetry.  相似文献   

6.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

7.
The racemate of an inherently chiral “spider‐like” octathiophene monomer T83 , in which chirality is generated by torsion in its backbone, was synthesized. The racemate was resolved into configurationally stable antipodes by HPLC on a chiral stationary phase. Electrooxidation of the enantiomers resulted in materials displaying high enantiorecognition ability towards the antipodes of some chiral probes. Moreover, the T83 racemate demonstrated great aptitude to stimulate formation of 3D rigid architectures if used as a cross‐linking monomer for molecular imprinting. This feature was exploited to devise a molecularly imprinted polymer‐based chemosensor selective for a thymine–adenine oligonucleotide.  相似文献   

8.
A new type of chiral magnetic nanoparticle was prepared from covalently linked magnetic nanoparticles (Fe3O4) and heptakis‐(6‐O‐triisopropylsilyl)‐β‐cyclodextrin (6‐TIPS‐β‐CD). The resulting selectors (TIPS‐β‐CD‐MNPs) combined the good magnetic properties Fe3O4 and efficient chiral recognition ability of 6‐TIPS‐β‐CD. The enantioselectivity of TIPS‐β‐CD‐MNPs towards 1‐(1‐naphthyl)ethylamine was six times higher than that of the parent β‐CD modified Fe3O4 particles.  相似文献   

9.
Magnetic silica‐coated magnetite (Fe3O4) sub‐microspheres with immobilized metal‐affinity ligands are prepared for protein adsorption. First, magnetite sub‐microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe3O4 particles using a sol–gel method to obtain magnetic silica sub‐microspheres with core‐shell morphology. Next, the trichloro(4‐chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu2+. The obtained magnetic silica sub‐microspheres with immobilized Cu2+ were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub‐microspheres are spherical in shape, very uniform in size with a core‐shell, and are almost superparamagnetic. The saturation magnetization of silica‐coated magnetite (Fe3O4) sub‐microspheres reached about 33 emu g?1. Protein adsorption results showed that the sub‐microspheres had a high adsorption capacity for BHb (418.6 mg g?1), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.  相似文献   

10.
The surface imprinting technique has been developed to overcome the mass‐transfer difficulty, but the utilization ratio of template molecules in the imprinting procedure still remains a challengeable task to be improved. In this work, specifically designed surface‐imprinted microspheres were prepared by a template‐oriented method for enantioseparation of amlodipine besylate. Submicron mesoporous silica microspheres were surface‐modified with double bonds, followed by polymerizing methacrylic acid to generate carboxyl modified mesoporous silica microspheres (PMAA@SiO2). Afterwards, PMAA@SiO2 was densely adsorbed with (S )‐amlodipine molecules to immobilize template molecules through multiple hydrogen bonding interactions. Then surface molecular imprinting was carried out by cross‐linking the carboxyl group of PMAA@SiO2 with ethylene glycol diglycidyl ether. The surface‐imprinted microspheres showed fast binding kinetics of only 20 min for equilibrium adsorption, and the saturation adsorption capacity reached 137 mg/g. The imprinted materials displayed appreciable chiral separation ability when used as column chromatography for enantioseparation of amlodipine from amlodipine besylate, and the enantiomeric excess of (S )‐amlodipine reached 13.8% with only 2.3 cm column length by no extra chiral additives. Besides, the imprinted materials exhibited excellent reusability, and this allows the potential application for amplification production of amlodipine enantiomer.  相似文献   

11.
Novel D2‐symmetric chiral amidoporphyrins with alkyl bridges across two chiral amide units on both sides of the porphyrin plane (designated “HuPhyrin”) have been effectively constructed in a modular fashion to permit variation of the bridge length. The CoII complexes of HuPhyrin, [Co(HuPhyrin)], represent new‐generation metalloradical catalysts where the metal‐centered d‐radical is situated inside a cavity‐like ligand with a more rigid chiral environment and enhanced hydrogen‐bonding capability. As demonstrated with cyclopropanation and aziridination as model reactions, the bridged [Co(HuPhyrin)] functions notably different from the open catalysts, exhibiting significant enhancement in both reactivity and stereoselectivity. Furthermore, the length of the distal alkyl bridge can have a remarkable influence on the catalytic properties.  相似文献   

12.
A novel kind of nanographene imide, namely pentaperylene decaimides (PPD) featuring dual‐core sixfold [5]helicenes and ten imide groups, was efficiently obtained. Among the possible 28 stereoisomers, which include 14 pairs of enantiomers, only one pair of enantiomers was obtained selectively which could be separated by chiral HPLC. Single‐crystal X‐ray diffraction analyses revealed that it exhibits a D2‐symmetric “four‐bladed propeller” conformation composed of conjoined double “three‐bladed propeller”, which is very stable and could not convert into other conformations even when heated up to 200 °C. Meanwhile, enantiomerically pure PPD also exhibits an excellent resistance to thermally induced racemization, which makes it a promising candidate for various applications in chiral material science.  相似文献   

13.
A ribbon‐shaped chiral liquid crystalline (LC) dendrimer with photochromic azobenzene mesogens and an isosorbide chiral center (abbreviated as AZ3DLC) was successfully synthesized and its major phase transitions were studied by using differential scanning calorimetry (DSC) and linear polarized optical microscopy (POM). Its ordered structures at different temperatures were further identified through structure‐sensitive diffraction techniques. Based on the experimental results, it was found that the AZ3DLC molecule exhibited the low‐ordered chiral smectic (Sm*) LC phase with 6.31 nm periodicity at a high‐temperature phase region. AZ3DLC showed the reversible photoisomerization in both organic solvents and nematic (N) LC media. As a chiral‐inducing agent, it exhibited a good solubility, a high helical‐twisting power, and a large change in the helical‐twisting power due to its photochemical isomerization in the commercially available N LC hosts. Therefore, we were able to reversibly “remote‐control” the colors in the whole visible region by finely tuning the helical pitch of the spontaneously formed helical superstructures.  相似文献   

14.
A novel, mixed‐ligand chiral rhodium(II) catalyst, Rh2(S‐NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S‐NTTL)3(dCPA) reveals a “chiral crown” conformation with a bulky dicyclohexylphenyl acetate ligand and three N‐naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium‐catalyzed bicyclobutanation/ copper‐catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8 % overall yield and 92 % ee.  相似文献   

15.
Rational design and synthesis of advanced anode materials are extremely important for high‐performance lithium‐ion and sodium‐ion batteries. Herein, a simple one‐step hydrothermal method is developed for fabrication of N‐C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N‐doped carbon layer. Owing to its unique structural features, the N‐C@MoS2 microspheres exhibit greatly enhanced lithium‐ and sodium‐storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane‐assisted hydrothermal method could be useful for the construction of many other high‐capacity metal oxide/sulfide composite electrode materials for energy storage.  相似文献   

16.
Organic azides have been somewhat popularized due to their pivotal role in the emerging field of “click chemistry”. A simple approach has been used for the synthesis of uniform nano Fe‐MIL‐88B‐NH2, and a generic postsynthetic modification route has been developed for the synthesis of azide‐modified nano Fe‐MIL‐88B‐N3. The approach also has been used to synthesize the azide‐modified IRMOF‐3(‐N3). These new azide‐modified Fe‐MIL‐88B‐N3 nanocrystals hold promising potential for the applications in the fields of “click chemistry”, nanotechnology devices and nano composite membranes.  相似文献   

17.
A novel dispersive liquid–liquid microextraction method based on amine‐functionalized Fe3O4 magnetic nanoparticles was developed for the determination of six phenolic acids in vegetable oils by high‐performance liquid chromatography. Amine‐functionalized Fe3O4 was synthesized by a one‐pot solvothermal reaction between Fe3O4 and 1,6‐hexanediamine and characterized by transmission electron microscopy and Fourier transform infrared spectrophotometry. A trace amount of phosphate buffer solution (extractant) was adsorbed on bare Fe3O4‐NH2 nanoparticles by hydrophilic interaction to form the “magnetic extractant”. Rapid extraction could be achieved while the “magnetic extractant” on amine‐functionalized Fe3O4 nanoparticles was dispersed in the sample solution by vortexing. After extraction, the “magnetic extractant” was collected by application of an external magnet. Some important parameters, such as pH and volume of extraction and desorption solvents, the extraction and desorption time needed were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, satisfactory extraction recoveries were obtained for the six phenolic acids in the range of 84.2–106.3%. Relative standard deviations for intra‐ and inter‐day precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied for the determination of six phenolic acids in eight kinds of vegetable oils.  相似文献   

18.
The effect of radioactive UO22+ on the oxygen‐transporting capability of hemoglobin‐based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer‐by‐layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe3O4) were loaded in porous CaCO3 particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO22+, it was found that UO22+ was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO22+ in vivo destroys the structure and oxygen‐transporting capability of Hb microspheres. In view of the high adsorption capacity of UO22+, the as‐assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation‐contaminated bodies, or from nuclear‐power reactor effluent before discharge into the environment.  相似文献   

19.
A ZnII complex of a C2‐chiral bisamidine‐type sp2N bidentate ligand ( L R ) possessing two dioxolane rings at both ends catalyzes a highly efficient quinone asymmetric Diels‐Alder reaction (qADA) between o‐alkoxy‐p‐benzoquinones and 1‐alkoxy‐1,3‐butadienes to construct highly functionalized chiral cis‐decalins, proceeding in up to a >99:1 enantiomer ratio with a high generality in the presence of H2O (H2O:ZnII=4–6:1). In the absence of water, little reaction occurs. The loading amount of the chiral ligand can be minimized to 0.02 mol % with a higher Zn/ L R ratio. This first success is ascribed to a supramolecular 3D arrangement of substrates, in which two protons of an “H2O‐ZnII” reactive species make a linear hydrogen bond network with a dioxolane oxygen atom and one‐point‐binding diene; the ZnII atom captures the electron‐accepting two‐points‐binding quinone fixed on the other dioxolane oxygen atom via an n‐π* attractive interaction. The mechanisms has been supported by 1H NMR study, kinetics, X‐ray crystallographic analyses of the related Zn L R complexes, and ligand and substrate structure‐reactivity‐selectivity relationship.  相似文献   

20.
《Electroanalysis》2017,29(5):1443-1450
In this study, inorganic/organic composites containing poly (N‐isopropylacrylamide) coated core‐shell SiO2 microspheres were prepared via surface‐initiated atom transfer radical polymerization (ATRP). The thermal responsive polymer, N‐isopropylacrylamide was treated with methanol, water and CuBr/CuBr2/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) at room temperature to form PNIPAM@SiO2 microspheres. The as‐prepared PNIPAM@SiO2 microspheres were characterized by FT‐IR, TGA, XPS, SEM, TEM analyses. Hemoglobin (Hb) was immobilized onto the surfaces of PNIPAM@SiO2 microspheres via hydrophobic and π‐π stacking interactions. The as‐prepared Hb/PNIPAM@SiO2 electrode exhibits well‐defined redox peak at a formal potential of −0.38 V, validating the direct electrochemistry of Hb. The Hb immobilized composite film retained its bioelectroactivity without any significant loss of catalytic activity. The modified electrode detects H2O2 over a wide linear concentration range (0.1 μM to 333 μM) with a detection limit of 0.07 μM. This modified electrode also successfully detects H2O2 from food and disinfectant samples with appreciable recovery values, validating its practicality. We believe that PNIPAM@SiO2 composite has great potential to be used in the detection of H2O2 and development of other enzyme based biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号