首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

2.
Suppose that \(\theta _1,\theta _2,\ldots ,\theta _n\) are positive numbers and \(n\ge 3\). We want to know whether there exists a spherical metric on \(\mathbb {S}^2\) with n conical singularities of angles \(2\pi \theta _1,2\pi \theta _2,\ldots ,2\pi \theta _n\). A sufficient condition was obtained by Mondello and Panov (Int Math Res Not 2016(16):4937–4995, 2016). We show that their condition is also necessary when we assume that \(\theta _1,\theta _2,\ldots ,\theta _n \not \in \mathbb {N}\).  相似文献   

3.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

4.
Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
where
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
  相似文献   

5.
We call the \({\delta}\)-vector of an integral convex polytope of dimension d flat if the \({\delta}\)-vector is of the form \({(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)}\), where \({a \geq 1}\). In this paper, we give the complete characterization of possible flat \({\delta}\)-vectors. Moreover, for an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^N}\) of dimension d, we let \({i(\mathcal{P},n)=|n\mathcal{P}\cap \mathbb{Z}^N|}\) and \({i^*(\mathcal{P},n)=|n(\mathcal{P} {\setminus}\partial \mathcal{P})\cap \mathbb{Z}^N|}\). By this characterization, we show that for any \({d \geq 1}\) and for any \({k,\ell \geq 0}\) with \({k+\ell \leq d-1}\), there exist integral convex polytopes \({\mathcal{P}}\) and \({\mathcal{Q}}\) of dimension d such that (i) For \({t=1,\ldots,k}\), we have \({i(\mathcal{P},t)=i(\mathcal{Q},t),}\) (ii) For \({t=1,\ldots,\ell}\), we have \({i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)}\), and (iii) \({i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)}\) and \({i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1)}\).  相似文献   

6.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

7.
\(f\: \cup {\mathcal {A}}\to {\rho}\) is called a conflict free coloring of the set-system\({\mathcal {A}}\)(withρcolors) if
$\forall A\in {\mathcal {A}}\ \exists\, {\zeta}<{\rho} (|A\cap f^{-1}\{{\zeta}\}|=1).$
The conflict free chromatic number\(\operatorname {\chi _{\rm CF}}\, ({\mathcal {A}})\) of \({\mathcal {A}}\) is the smallest ρ for which \({\mathcal {A}}\) admits a conflict free coloring with ρ colors.
\({\mathcal {A}}\) is a (λ,κ,μ)-system if \(|{\mathcal {A}}| = \lambda\), |A|=κ for all \(A \in {\mathcal {A}}\), and \({\mathcal {A}}\) is μ-almost disjoint, i.e. |AA′|<μ for distinct \(A, A'\in {\mathcal {A}}\). Our aim here is to study
$\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,\mu) = \sup \{\operatorname {\chi _{\rm CF}}\, ({\mathcal {A}})\: {\mathcal {A}}\mbox{ is a } (\lambda,\kappa,\mu)\mbox{-system}\}$
for λκμ, actually restricting ourselves to λω and μω.
For instance, we prove that
? for any limit cardinal κ (or κ=ω) and integers n≧0, k>0, GCH implies
$\operatorname {\chi _{\rm CF}}\, (\kappa^{+n},t,k+1) =\begin{cases}\kappa^{+(n+1-i)}&; \text{if \ } i\cdot k < t \le (i+1)\cdot k,\ i =1,\dots,n;\\[2pt]\kappa&; \text{if \ } (n+1)\cdot k < t;\end{cases}$
? if λκω>d>1, then λ<κ +ω implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,d) <\omega\) and λ≧? ω (κ) implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,d) = \omega\);? GCH implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,\omega) \le \omega_{2}\) for λκω 2 and V=L implies \(\operatorname {\chi _{\rm CF}}\, (\lambda,\kappa,\omega) \le \omega_{1}\) for λκω 1;? the existence of a supercompact cardinal implies the consistency of GCH plus \(\operatorname {\chi _{\rm CF}}\,(\aleph_{\omega+1},\omega_{1},\omega)= \aleph_{\omega+1}\) and \(\operatorname {\chi _{\rm CF}}\, (\aleph_{\omega+1},\omega_{n},\omega) = \omega_{2}\) for 2≦nω;? CH implies \(\operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega,\omega) = \operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega_{1},\omega) = \omega_{1}\), while \(MA_{\omega_{1}}\) implies \(\operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega,\omega) = \operatorname {\chi _{\rm CF}}\, (\omega_{1},\omega_{1},\omega) = \omega\).  相似文献   

8.
We study the impedance functions of conservative L-systems with the unbounded main operators. In addition to the generalized Donoghue class \({\mathfrak {M}}_\kappa \) of Herglotz–Nevanlinna functions considered by the authors earlier, we introduce “inverse” generalized Donoghue classes \({\mathfrak {M}}_\kappa ^{-1}\) of functions satisfying a different normalization condition on the generating measure, with a criterion for the impedance function \(V_\Theta (z)\) of an L-system \(\Theta \) to belong to the class \({\mathfrak {M}}_\kappa ^{-1}\) presented. In addition, we establish a connection between “geometrical” properties of two L-systems whose impedance functions belong to the classes \({\mathfrak {M}}_\kappa \) and \({\mathfrak {M}}_\kappa ^{-1}\), respectively. In the second part of the paper we introduce a coupling of two L-system and show that if the impedance functions of two L-systems belong to the generalized Donoghue classes \({\mathfrak {M}}_{\kappa _1}\)(\({\mathfrak {M}}_{\kappa _1}^{-1}\)) and \({\mathfrak {M}}_{\kappa _2}\)(\({\mathfrak {M}}_{\kappa _2}^{-1}\)), then the impedance function of the coupling falls into the class \({\mathfrak {M}}_{\kappa _1\kappa _2}\). Consequently, we obtain that if an L-system whose impedance function belongs to the standard Donoghue class \({\mathfrak {M}}={\mathfrak {M}}_0\) is coupled with any other L-system, the impedance function of the coupling belongs to \({\mathfrak {M}}\) (the absorbtion property). Observing the result of coupling of n L-systems as n goes to infinity, we put forward the concept of a limit coupling which leads to the notion of the system attractor, two models of which (in the position and momentum representations) are presented. All major results are illustrated by various examples.  相似文献   

9.
Two fundamental theorems by Spitzer–Erickson and Kesten–Maller on the fluctuation-type (positive divergence, negative divergence or oscillation) of a real-valued random walk \((S_{n})_{n\ge 0}\) with iid increments \(X_{1},X_{2},\ldots \) and the existence of moments of various related quantities like the first passage into \((x,\infty )\) and the last exit time from \((-\infty ,x]\) for arbitrary \(x\ge 0\) are studied in the Markov-modulated situation when the \(X_{n}\) are governed by a positive recurrent Markov chain \(M=(M_{n})_{n\ge 0}\) on a countable state space \(\mathcal {S}\); thus, for a Markov random walk \((M_{n},S_{n})_{n\ge 0}\). Our approach is based on the natural strategy to draw on the results in the iid case for the embedded ordinary random walks \((S_{\tau _{n}(i)})_{n\ge 0}\), where \(\tau _{1}(i),\tau _{2}(i),\ldots \) denote the successive return times of M to state i, and an analysis of the excursions of the walk between these epochs. However, due to these excursions, generalizations of the aforementioned theorems are surprisingly more complicated and require the introduction of various excursion measures so as to characterize the existence of moments of different quantities.  相似文献   

10.
We choose some special unit vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) in \({\mathbb {R}}^3\) and denote by \({\mathscr {L}}\subset {\mathbb {R}}^5\) the set of all points \((L_1,\ldots ,L_5)\in {\mathbb {R}}^5\) with the following property: there exists a compact convex polytope \(P\subset {\mathbb {R}}^3\) such that the vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) (and no other vector) are unit outward normals to the faces of P and the perimeter of the face with the outward normal \({\mathbf {n}}_k\) is equal to \(L_k\) for all \(k=1,\ldots ,5\). Our main result reads that \({\mathscr {L}}\) is not a locally-analytic set, i.e., we prove that, for some point \((L_1,\ldots ,L_5)\in {\mathscr {L}}\), it is not possible to find a neighborhood \(U\subset {\mathbb {R}}^5\) and an analytic set \(A\subset {\mathbb {R}}^5\) such that \({\mathscr {L}}\cap U=A\cap U\). We interpret this result as an obstacle for finding an existence theorem for a compact convex polytope with prescribed directions and perimeters of the faces.  相似文献   

11.
For L a complete lattice L and \(\mathfrak {X}=(X,(R_i)_I)\) a relational structure, we introduce the convolution algebra \(L^{\mathfrak {X}}\). This algebra consists of the lattice \(L^X\) equipped with an additional \(n_i\)-ary operation \(f_i\) for each \(n_i+1\)-ary relation \(R_i\) of \(\mathfrak {X}\). For \(\alpha _1,\ldots ,\alpha _{n_i}\in L^X\) and \(x\in X\) we set \(f_i(\alpha _1,\ldots ,\alpha _{n_i})(x)=\bigvee \{\alpha _1(x_1)\wedge \cdots \wedge \alpha _{n_i}(x_{n_i}):(x_1,\ldots ,x_{n_i},x)\in R_i\}\). For the 2-element lattice 2, \(2^\mathfrak {X}\) is the reduct of the familiar complex algebra \(\mathfrak {X}^+\) obtained by removing Boolean complementation from the signature. It is shown that this construction is bifunctorial and behaves well with respect to one-one and onto maps and with respect to products. When L is the reduct of a complete Heyting algebra, the operations of \(L^\mathfrak {X}\) are completely additive in each coordinate and \(L^\mathfrak {X}\) is in the variety generated by \(2^\mathfrak {X}\). Extensions to the construction are made to allow for completely multiplicative operations defined through meets instead of joins, as well as modifications to allow for convolutions of relational structures with partial orderings. Several examples are given.  相似文献   

12.
We present a mapping of the binary prefer-opposite de Bruijn sequence of order n onto the binary prefer-one de Bruijn sequence of order \(n-1\). The mapping is based on the differentiation operator \(D(\langle {b_1,\ldots ,b_l}\rangle ) = \langle b_2-b_1, b_3-b_2,\ldots , b_{l}-b_{l-1} \rangle \) where bit subtraction is modulo two. We show that if we take the prefer-opposite sequence \(\langle {b_1,b_2,\ldots ,b_{2^n}}\rangle \), apply D to get the sequence \(\langle {\hat{b}_1, \ldots , \hat{b}_{2^n-1}}\rangle \) and drop all the bits \(\hat{b}_i\) such that \(\langle {\hat{b}_i,\ldots ,\hat{b}_{i+n-1}}\rangle \) is a substring of \(\langle {\hat{b}_1,\ldots ,\hat{b}_{i+n-2}}\rangle \), we get the prefer-one de Bruijn sequence of order \(n-1\).  相似文献   

13.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

14.
This paper deals with a two-competing-species chemotaxis system with two different chemicals
$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l} \displaystyle u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla v)+\mu_{1} u(1-u-a _{1}w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau v_{t}=\Delta v-v+w, & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle w_{t}=\Delta w-\chi_{2}\nabla \cdot (w\nabla z)+\mu_{2}w(1-a_{2}u-w), & (x,t)\in \varOmega \times (0,\infty ), \\ \displaystyle \tau z_{t}=\Delta z-z+u, & (x,t)\in \varOmega \times (0,\infty ), \end{array}\displaystyle \right . \end{aligned}$$
under homogeneous Neumann boundary conditions in a smooth bounded domain \(\varOmega \subset \mathbb{R}^{n}\) \((n\geq 1)\) with the nonnegative initial data \((u_{0},\tau v_{0},w_{0},\tau z_{0})\in C^{0}(\overline{\varOmega }) \times W^{1,\infty }(\varOmega )\times C^{0}(\overline{\varOmega })\times W ^{1,\infty }(\varOmega )\), where \(\tau \in \{0,1\}\) and the parameters \(\chi_{i},\mu_{i},a_{i}\) (\(i=1,2\)) are positive. When \(\tau =0\), based on some a priori estimates and Moser-Alikakos iteration, it is shown that regardless of the size of initial data, the system possesses a unique globally bounded classical solution for any positive parameters if \(n=2\). On the other hand, when \(\tau =1\), relying on the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a unique globally bounded classical solution provided that \(n\geq 1\) and there exists \(\theta_{0}>0\) such that \(\frac{\chi_{2}}{ \mu_{1}}<\theta_{0}\) and \(\frac{\chi_{1}}{\mu_{2}}<\theta_{0}\).
  相似文献   

15.
16.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

17.
Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.  相似文献   

18.
Let \(\mu \) and \(\nu \) be measures supported on \(\left( -1,1\right) \) with corresponding orthonormal polynomials \(\left\{ p_{n}^{\mu }\right\} \) and \( \left\{ p_{n}^{\nu }\right\} \), respectively. Define the mixed kernel
$$\begin{aligned} K_{n}^{{\mu },\nu }\left( x,y\right) =\sum _{j=0}^{n-1}p_{j}^{\mu }\left( x\right) p_{j}^{\nu }\left( y\right) . \end{aligned}$$
We establish scaling limits such as
$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{\pi \sqrt{1-\xi ^{2}}\sqrt{\mu ^{\prime }\left( \xi \right) \nu ^{\prime }\left( \xi \right) }}{n}K_{n}^{\mu ,\nu }\left( \xi +\frac{a\pi \sqrt{1-\xi ^{2}}}{n},\xi +\frac{b\pi \sqrt{1-\xi ^{2}}}{n}\right) \\&\quad =S\left( \frac{\pi \left( a-b\right) }{2}\right) \cos \left( \frac{\pi \left( a-b\right) }{2}+B\left( \xi \right) \right) , \end{aligned}$$
where \(S\left( t\right) =\frac{\sin t}{t}\) is the sinc kernel, and \(B\left( \xi \right) \) depends on \({\mu },\nu \) and \(\xi \). This reduces to the classical universality limit in the bulk when \(\mu =\nu \). We deduce applications to the zero distribution of \(K_{n}^{{\mu },\nu }\), and asymptotics for its derivatives.
  相似文献   

19.
In this paper, we consider the initial value problem for the nonlinear fractional differential equations
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} D^\alpha u(t)=f(t,u(t),D^{\beta _1}u(t),\ldots ,D^{\beta _N}u(t)), \quad &{}t\in (0,1],\\ D^{\alpha -k}u(0)=0, \quad &{}k=1,2,\ldots ,n, \end{array} \right. \end{aligned}$$
where \(\alpha >\beta _1>\beta _2>\cdots \beta _N>0\), \(n=[\alpha ]+1\) for \(\alpha \notin \mathbb {N}\) and \(\alpha =n\) for \(\alpha \in \mathbb {N}\), \(\beta _j<1\) for any \(j\in \{1,2,\ldots ,N\}\), D is the standard Riemann–Liouville derivative and \(f:[0,1]\times \mathbb {R}^{N+1}\rightarrow \mathbb {R}\) is a given function. By means of Schauder fixed point theorem and Banach contraction principle, an existence result and a unique result for the solution are obtained,respectively. As an application, some examples are presented to illustrate the main results.
  相似文献   

20.
It is well known that monic orthogonal polynomial sequences \(\{T_n\}_{n\ge 0}\) and \(\{U_n\}_{n\ge 0}\), the Chebyshev polynomials of the first and second kind, satisfy the relation \(DT_{n+1}=(n+1)U_n\) (\(n\ge 0\)). One can also easily check that the following “inverse” of the mentioned formula holds: \({\mathcal {U}}_{-1}(U_n)=(n+1)T_{n+1}\) (\(n\ge 0\)), where \({\mathcal {U}}_\xi =x(xD+{\mathbb {I}})+\xi D\) with \(\xi \) being an arbitrary nonzero parameter and \({\mathbb {I}}\) representing the identity operator. Note that whereas the first expression involves the operator D which lowers the degree by one, the second one involves \({\mathcal {U}}_\xi \) which raises the degree by one (i.e. it is a “raising operator”). In this paper it is shown that the scaled Chebyshev polynomial sequence \(\{a^{-n}U_n(ax)\}_{n\ge 0}\) where \(a^2=-\xi ^{-1}\), is actually the only monic orthogonal polynomial sequence which is \({\mathcal {U}}_\xi \)-classical (i.e. for which the application of the raising operator \({\mathcal {U}}_\xi \) turns the original sequence into another orthogonal one).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号