首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reaction rate constants for the hydrolysis of organic esters and amides were determined at temperatures of 100–240°C in aqueous solutions buffered at pH values between 5.5 and 7.3. Experiments are modeled assuming alkaline hydrolysis with a thermodynamic solution model included to account for the temperature dependence of hydroxide ion concentration. In most cases, the ester hydrolysis second order rate constants agree well with published values from experiments in strongly basic solutions at pH values from 11 to 14 and temperatures from 25–80°C, despite the large extrapolations required to compare the data sets. The amide hydrolysis rate constants are about one order of magnitude higher than the extrapolated results from other investigators, but the reaction rate increased proportionally with hydroxide ion concentration, suggesting that an alkaline hydrolysis mechanism is also appropriate. These data establish the validity of the alkaline hydrolysis mechanism and can be used to predict hydrolysis reaction rates in neutrally-buffered solutions such as many groundwater and geothermal fluids.  相似文献   

2.
We have performed a product and kinetic study of the hydrolysis of 3,4-diphenyl-1,2,5-thiadiazole-1,1-dioxide in aqueous solution. Benzil and sulfamide are the only products of hydrolysis and are formed in equimolar yields. The kinetic results indicate that a first order law is followed up to 90% conversion. The observed rate constant is independent of substrate concentration. Ionic strength and buffer concentration do not affect the rate constant, but the reaction is acid-base catalyzed. The rate-pH profile has been determined and a mechanism that fits the experimental data satisfactorily is proposed. Corresponding rate constants and equilibrium constants for the protonation of the substrate are reported.  相似文献   

3.
The kinetic model of the hydrolysis of lactose by β-galactosidase from Aspergillus niger immobilized on a commercial ceramic monoliths was estimated in the attendance of lactose and its hydrolysis reaction products galactose and glucose. The aim of this work was to developing kinetic model of lactase hydrolysis by Aspergillus niger. The variables in this study are temperature, pH, enzyme concentration, substrate concentration and final product. The optimum temperature used to achieve the best hydrolysis performance in the kinetic model selection was 55 and 60 °C. The optimum pH used for enzyme activity was about 3.5 to 4. Five kinetic models were proposed to confirm experimental data the enzymatic reaction of the lactose hydrolysis by the β-galactosidase. The kinetics of lactose hydrolysis by both Immobilized and soluble lactases were scrutinized in a batch reactor system in the lack of any mass conduction restriction. In both instance the galactose inhibition kinetic models predicted the experimental data. The model is capable to fit the experimental data correctly in the extensive experimental span studied.  相似文献   

4.
This study focused on the effect of hemicellulose and lignin on enzymatic hydrolysis of dairy manure and hydrolysis process optimization to improve sugar yield. It was found that hemicellulose and lignin in dairy manure, similar to their role in other lignocellulosic material, were major resistive factors to enzymatic hydrolysis and that the removal of either of them, or for best performance, both of them, improved the enzymatic hydrolysis of manure cellulose. This result combined with scanning electron microscope (SEM) pictures further proved that the accessibility of cellulose to cellulase was the most important feature to the hydrolysis. Quantitatively, fed-batch enzymatic hydrolysis of fiber without lignin and hemicellulose had a high glucose yield of 52% with respect to the glucose concentration of 17 g/L at a total enzyme loading of 1300 FPU/L and reaction time of 160 h, which was better than corresponding batch enzymatic hydrolysis.  相似文献   

5.
The objective of this study is to perform a comprehensive enzyme kinetics analysis in view of validating and consolidating a semimechanistic kinetic model consisting of homogeneous and heterogeneous reactions for enzymatic hydrolysis of lignocellulosic biomass proposed by the U.S. National Renewable Energy Laboratory (Kadam et al., Biotechnol Prog 20(3):698–705, 2004) and its variations proposed in this work. A number of dedicated experiments were carried out under a range of initial conditions (Avicel® versus pretreated barley straw as substrate, different enzyme loadings and different product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanisms of the model. A nonlinear least squares method was used to identify the model and estimate kinetic parameters based on the experimental data. The suitable mathematical model for industrial application was selected among the proposed models based on statistical information (weighted sum of square errors). The analysis showed that transglycosylation plays a key role at high glucose levels. It also showed that the values of parameters depend on the selected experimental data used for parameter estimation. Therefore, the parameter values are not universal and should be used with caution. The model proposed by Kadam et al. (Biotechnol Prog 20(3):698–705, 2004) failed to predict the hydrolysis phenomena at high glucose levels, but when combined with transglycosylation reaction(s), the prediction of cellulose hydrolysis behaviour over a broad range of substrate concentrations (50–150 g/L) and enzyme loadings (15.8–31.6 and 1–5.9 mg protein/g cellulose for Celluclast and Novozyme 188, respectively) was possible. This is the first study introducing transglycosylation into the semimechanistic model. As long as these type of models are used within the boundary of their validity (substrate type, enzyme source and substrate concentration), they can support process design and technology improvement efforts at pilot and full-scale studies.  相似文献   

6.
The micellar catalytic model (or the consecutive first order reaction has been proposed in this paper. It was applied to the alkaline hydrolysis of dimethyl phthalate in micellar solutions of surfactants (CTAB, SDS and Triton X-100), and the alkaline hydrolysis of bis (2,4-dinitrophenyl) posphate in CTAB micellar solution. Rate constants obtained in micellar phase indicate that the two steps of alkaline hydrolysis of dimethyl phthalate are both inhibited by all of the surfactants investigated. CTAB micelle exhibits a greater catalytic effect on the alkaline hydrolysis of bis (2, 4-dinitrophenyl) phosphate. this may be arised from the local concentration effect of hydroxide ion in CTAB micellar phase. Nevertheless. the second order rate constant of bis-(2, 4-dinitrophenyl) phosphate in the micellar phase is smaller than that in the bulk phase.  相似文献   

7.
In this article, we investigate experimentally a wide range of situations where charge inversion (i.e., overcompensation of the surface charge of a colloidal particle by the countercharge) can occur. To that end, the electrophoretic mobility of sodium montmorillonite, silica, and polystyrene latex as functions of pH and concentration of different salts is presented, and conditions are established where charge inversion occurs. The reason for this study is to provide experimental evidence for distinguishing between two existing models for the explanation of charge inversion. One of these is the specific adsorption of ions located in the Stern layer in combination with a Gouy-Chapman diffuse part of the double layer. The other ion-correlation theories explain the phenomenon in terms of purely physical arguments based on Coulombic pair interactions between ions and surface charges and on excluded volume effects. In distinguishing between these two interpretations, the influence of the pH plays a central role because of its effect on the hydrolysis of multivalent cations. In our experiments, it is found that although 1-2 and 2-2 electrolytes provoke a decrease in the absolute values of the electrophoretic mobilities when their concentration in solution is increased, they never lead to charge inversion, whatever the surface charge or the pH. However, in the case of salts of trivalent cations, electrokinetic charge reversal is often observed above a certain critical electrolyte concentration. In addition, the extent of overcharging increases when the concentration is raised above the critical value. This trend occurs for any system in which the surface charge is pH-independent, as in polystyrene latex and montmorillonite. Most of the results presented here are compatible with the specific adsorption of hydrolyzed metal ions as the main driving force for charge inversion. At low pH, when the hydrolysis of trivalent cations is likely to be absent, overcharging can be attributed to ion correlation effects.  相似文献   

8.
N-Acyl-beta-sultams are time dependent irreversible active site directed inhibitors of elastase. The rate of inactivation is first order with respect to beta-sultam concentration and the second order rate constants show a similar dependence on pH to that for the hydrolysis of a peptide substrate. Inactivation is due to the formation of a stable 1:1 enzyme inhibitor complex as a result of the active site serine being sulfonylated by the beta-sultam. Ring opening of the beta-sultam occurs by S-N fission in contrast to the C-N fission observed in the acylation of elastase by N-acylsulfonamides. Structure-activity effects are compared between sulfonylation of the enzyme and alkaline hydrolysis. Variation in 4-alkyl and N-substituted beta-sultams causes differences in the rates of inactivation by 4 orders of magnitude.  相似文献   

9.
Addition of additives has been confirmed to increase cellulase performance in the hydrolysis of lignocellulosic materials. In the hydrolysis of xylan-containing lignocellulosic biomass, xylanase can synergistically enhance the performance of cellulase. However, the role of additives in xylan hydrolysis by xylanase is not yet clear. In this work, with the presence of additives (bovine serum albumin, poly(ethylene glycol), and Tween), the hydrolysis of isolated xylan and the xylan in corn stover increased to different extents. Additives increased free xylanase in supernatants in the hydrolysis with xylanase, indicating the reduction of the adsorption of xylanase on corn stover and insoluble xylan. Enhanced hydrolysis of Avicel and corn stover by additives suggested that besides the prevention of unproductive binding of xylanase to lignin by additives, reducing the adsorption of xylanase on substrates was also contributed to enzymatic hydrolysis. The increment of xylanase activity by additives suggests that the additives were activators of xylanase. The results of this work indicate that the supplementation of additives could improve xylanase performance, synergistically enhanced the cellulose hydrolysis, and beneficial for the recycling of xylanase.  相似文献   

10.
The kinetics of formanilides hydrolysis were determined under first‐order conditions in hydrochloric acid (0.01–8 M, 20–60°C) and in hydroxide solutions (0.01–3 M, 25 and 40°C). Under acidic conditions, second‐order specific acid catalytic constants were used to construct Hammett plots. The ortho effect was analyzed using the Fujita–Nishioka method. In alkaline solutions, hydrolysis displayed both first‐ and second‐order dependence in the hydroxide concentration. The specific base catalytic constants were used to construct Hammett plots. Ortho effects were evaluated for the first‐order dependence on the hydroxide concentration. Formanilide hydrolyzes in acidic solutions by specific acid catalysis, and the kinetic study results were consistent with the AAC2 mechanism. Ortho substitution led to a decrease in the rates of reaction due to steric inhibition of resonance, retardation due to steric bulk, and through space interactions. The primary hydrolytic pathway in alkaline solutions was consistent with a modified BAC2 mechanism. The Hammett plots for hydrolysis of meta‐ and para‐substituted formanilides in 0.10 M sodium hydroxide solutions did not show substituent effects; however, ortho substitution led to a decrease in rate constants proportional to the steric bulk of the substituent.  相似文献   

11.
Acid mediated hydrolysis of blueberry anthocyanins   总被引:1,自引:0,他引:1  
Acid mediated hydrolysis of anthocyanins was studied using capillary zone electrophoresis (CZE). A commercially available wild blueberry (Bilberry) extract was dissolved in different concentrations of TFA (0.1, 1, 3, 9%), then was subjected to thermodecomposition reaction at 95 degrees C. After the reaction, the samples were analyzed by CZE. The hydrolysis rate of each anthocyanin and the formation of the aglycon were determined by the change in the peak pattern of the anthocyanins in the electropherogram. Each anthocyanin peak decreased time dependently in a first order kinetic fashion. It was revealed that the hydrolysis rate of each anthocyanin was determined primarily by the type of conjugated sugar and not by the aglycon structure. The rate constant of anthocyanin hydrolysis was in the following order, arabinoside>galactoside>glucoside without regard to the aglycon structure. The kinetic behavior of this anthocyanin hydrolysis together with the CZE mobility allowed us to identify an unknown CZE peak as delphinidin 3-O-beta-arabinoside. At low TFA concentration, significant decomposition of the anthocyanidin nucleus occurred, but the glycoside hydrolysis predominated at high TFA concentration. It was further revealed that the aglycon released reacted successively to form polymeric products at higher TFA conditions.  相似文献   

12.
饮用水新型含氮消毒副产物卤乙酰胺稳定性研究   总被引:5,自引:0,他引:5  
楚文海  高乃云  邓扬 《有机化学》2009,29(10):1569-1574
饮用水氯化消毒工艺向氯胺消毒工艺的转变, 降低了三卤甲烷(THM)和卤乙酸(HAA)等消毒副产物(DBP)的浓度, 但增加了毒性更强的含氮消毒副产物(N-DBP)含量, 卤乙酰胺(HAcAm)便是其中的代表. 本研究结合线性自由能关系(LFER)理论, 考察了HAcAm在不同pH条件下的水解特性, 以及不同氯投加量条件下的氯化特性, 并探讨了HAcAm的水解和氯化反应路径. 结果表明, 在较强的酸性条件下(pH=4)二氯乙酰胺(DCAcAm)将发生水解反应, pH=5时DCAcAm较为稳定, 三氯乙酰胺(TCAcAm)在酸性条件下未产生明显的水解现象; 碱性环境中TCAcAm和DCAcAm皆发生明显水解反应, 反应符合一级动力学, 保存DCAcAm和TCAcAm水样时需调pH至5左右. 氯化消毒会产生较高浓度的THM和HAA, 但可能会缩减毒性更强的HAcAm等N-DBP在饮用水中的含量. pH=10时TCAcAm水解后快速生成三氯乙酸(TCAA); 而对于氯化反应, TCAcAm与HOCl反应生成较为稳定的中间产物Cl-N-TCAcAm, 当HOCl浓度较高时, Cl-N-TCAcAm进一步与HOCl反应生成TCAA.  相似文献   

13.
The hydrolysis process of the anticancer agents novel non-classical trans- platinum(Ⅱ ) with aliphatic amines and the influence of solvent models therein have been studied by using hybrid density functional theory (B3LYP). In this study, the stepwise hydrolysis, trans- [PtCl2(Am)(isopropylamine)] + 2H2O → trans-[Pt(Am)(isopropylamine)(OH2)2]2+ + 2Cl-, was explored. Implicit solvent effects were incorporated through polarized continuum models. The stationary points on the potential energy surfaces for the first and second hydrolysis steps, proceeding via a general SN2 pathway, were fully optimized and characterized. It was found that the first hydrolysis reaction is easier than the second one and the hydrolysis of trans-[PtCl2- (isopropylamine)2] is the easiest in our studying systems. The result can assist in under-tanding the hydrolysis mechanism of trans-[PtCl2(Am)(isopropylamine)] and designing novel Pt-based anticancer drugs.  相似文献   

14.
The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However, UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.  相似文献   

15.
Empty fruit bunch (EFB), a residual product of the palm plantation, is an attractive biomass for biorefinery. As xylan is susceptible to high temperature pretreatment, it is important to setup a proper pretreatment condition to maximize the sugar recovery from EFB. Kinetic parameters of mathematical models were obtained in order to predict the concentration of xylose, glucose, furfural, and acetic acid in the hydrolysate and to find production conditions of xylose. We investigated the kinetics of hot liquid water and dilute sulfuric acid hydrolysis over a 40-min period using a self-designed setup by measuring the concentrations of released sugars (xylose, glucose) and degradation products (acetic acid and furfural). The reaction was performed within the range 160~180 °C, under reaction conditions of various concentration of sulfuric acid (0.1~0.2%) and 1:7 solid-liquid ratio in a batch reactor. The kinetic constants can be expressed by the Arrhenius equation with the activation energy for the hydrolysis of sugar and decomposition of sugar. The activation energy of xylose was determined to be 136.2187 kJ mol(-1).  相似文献   

16.
Reactive oxygen molecules are formed in vivo as by-products of normal aerobic metabolism. All organisms dependent on oxygen are inevitably exposed to these species so that DNA damage can occur in both genomic and mitochondrial DNA (mtDNA). In order to determine endogenous DNA damage we have developed an analytical method that involves the isolation and hydrolysis of genomic DNA or mtDNA, the labeling of modified and unmodified nucleotides and micellar electrokinetic chromatography with laser-induced fluorescence detection. With this method we have found etheno-adenine, thymine glycol, uracil, hypoxanthine, and 5-methylcytosine. These were identified by the addition of internal standards to the genomic or mtDNA. There are a large number of other signals in the electropherograms of mtDNA that we have never found in genomic DNA analysis because they are at lower concentration in the genome. In the DNA of untreated patients with chronic lymphocytic leukemia (CLL), uracil and high levels of etheno-adenine were found, which can be explained by antioxidant enzyme alterations and oxidative stress in the CLL lymphocytes.  相似文献   

17.
The kinetics of exoglucanase (Cel7A) from Trichoderma reesei was investigated in the presence of cellobiose and 24 different enzyme/Avicel ratios for 47 h, in order to establish which of the eight available kinetic models best explained the factors involved. The heterogeneous catalysis was studied and the kinetic parameters were estimated employing integrated forms of Michaelis-Menten equations through the use of nonlinear least squares. It was found that cellulose hydrolysis follows a model that takes into account competitive inhibition by cellobiose (final product) with the following parameters: Km = 3.8 mM, Kic = 0.041 mM, kcat = 2 h-1 (5.6 x 10-4 s-1). Other models, such as mixed type inhibition and those incorporating improvements concerning inhibition by substrate and parabolic inhibition, increased the modulation performance very slightly. The results support the hypothesis that nonproductive enzyme substrate complexes, parabolic inhibition, and enzyme inactivation (Selwyn test) are not the principal constraints in enzymatic cellulose hydrolysis. Under our conditions, the increment in hydrolysis was not significant for substrate/enzyme ratios <6.5.  相似文献   

18.
Methyl acrylate polymer colloids can be hydrolyzed self-catalytically by bound strong acid surface groups derived from the polymerization initiator. The kinetics of hydrolysis were earlier shown to be apparently pseudo-zeroth-order for any given latex, and first order with respect to surface strong acid concentration. A surface reaction zone model was proposed to explain the kinetics. This model leads to the prediction that the polymer particles will possess a core-shell morphology after some hydrolysis has occurred. This study employs 13C NMR spectroscopy to investigate the particle morphology in the wet latex, a new application for this method. The temperature dependence of the 13C NMR integrated intensities at various levels of hydrolysis provides strong evidence that the particles do possess core-shell morphology, and that the shell is composed of PAA/PMA copolymer. This shell is swollen and plasticized by water, resulting in greatly enhanced segmental mobility of the polymer chains as evidenced by marked narrowing of the NMR lines. Thermal measurements alone cannot distinguish particle morphology because PMA appears to be somewhat compatible with its partially hydrolyzed analog at the temperatures of measurement.  相似文献   

19.
Oligomer solubility could potentially play an important role in controlling the rates and yields in the thermochemical hydrolysis of hemicellulose as a pretreatment for subsequent enzymatic conversion of cellulose. However, limited data or models are available to describe the aqueous solubility of sugar monomers and oligomers. In this work, we measured the solubilities of sugars common to many biomass feedstocks in the temperature range of 25–30°C. Then we reviewed solubility models for sugars from the open literature. Finally, we applied models to test their ability to describe this and other data reported in the literature. It was found that the solubility of sugar monomers was not well described by the ideal solubility law or other more complex models. However, with an empirical adjustment to the enthalpy of fusion, the ideal solubility law was able to approximately predict the solubility of cello-oligomers. Based on these results, solubilities for low molecular weight xylo-oligomers are predicted to investigate their possible importance in pretreatment and define further experimental measurements needed to improve our understanding of sugar and oligomer solubility.  相似文献   

20.
The direct reaction of an imidazole-2-ylidene in a predominantly aqueous environment [about 0.1 M solution in a H(2)O (>60%)/THF solvent system] was investigated for the first time. The reaction yielded a stable solution of the corresponding imidazolium-hydroxide of pH 13, which is in agreement with results from an ab initio molecular dynamics simulation. In contrast, hydrolysis of the carbene in a mainly aprotic environment (>80% THF) gives a hydrogen-bridged carbene-water complex which could be detected by NMR and IR spectroscopies for the first time. This complex converts slowly to two isomeric ring opened products and is at higher water concentration in dynamic equilibrium with the imidazolium hydroxide. A computational mechanistic study of the carbene hydrolysis with a gradually increasing number of water molecules revealed that the imidazolium-hydroxide structure can only be optimized with three or more water molecules as reactants, and with the increasing number of water molecules its stability is increasing with respect to the carbene-water complex. In agreement with the experimental results, these findings point out that solvent stabilization and basicity of the hydroxide ion plays a crucial role in the reaction. With increasing number of water molecules the barriers connecting the reaction intermediates are getting smaller, and the ring opened hydrolysis products can be derived from imidazolium-hydroxide type intermediates. Computational studies on the hydrolysis of a nonaromatic imidazolidine-2-ylidene analogue clearly indicated the analogous ring-opened product to be by 10-12 kcal/mol more stable than the appropriate ion pair and the carbene-water complex, in agreement with the known aromatic stabilization of imidazol-2-ylidenes. Accordingly, these molecules hydrolyze with exclusive formation of the ring-opened product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号