首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied excess electron filling rule in the coupled multiple nanocrystal quantum-dot systems, i.e. quantum chain and quantum pattern, by the unrestricted Hartree–Fock–Roothaan method. Assuming each quantum dot of quantum pattern to be confined in a three-dimensional spherical potential well of finite depth, we have studied the intradot and interdot electron Coulomb and exchange interactions. By varying the center distance d between the coupled quantum dots, the transition from the strong- to weak-coupling situation is realized. For the systems in question, our results show that, with the filling of excess electrons into the quantum pattern, the corresponding chemical potentials form quasi-band structure, which is similar to the energy-band structure of crystal material. In each chemical-potential band of quantum pattern, the number of chemical-potential curves is equal to the number of quantum dots, and the distributions of them depend strongly on the quantum-dot arrangement structure of quantum pattern.  相似文献   

2.
周青春  狄尊燕 《物理学报》2013,62(13):134206-134206
用全量子理论导出隧穿量子点分子-辐射场相互作用系统状态满足的微分方程组, 在相干态辐射场和量子点分子处于隧穿激发态及基态的初始条件下, 应用Pegg-Barnett相位理论计算和分析了辐射场的相位概率分布及相位涨落, 研究了声子-量子点分子作用对辐射场相位的影响, 并与Husimi相位分布做了比较. 结果表明, 温度显著影响光场相位概率分布的时间演化规律, 声子既可以抑制也可以增强辐射场相位扩散和涨落, 取决于量子点分子的初态. Husimi相位分布和Pegg-Barnett相位分布符合度相当高. 关键词: 量子点分子 声子 量子相位 Q函数')" href="#">Q函数  相似文献   

3.
The wave functions of stationary states and the spectrum of two-electron system are analytically determined in a symmetric double quantum dot. It is shown that in the ground state when the external electric field is absent, electrons cannot reside in the same quantum dot due to the Coulomb blockade. This situation changes in an external electric field. At a critical field strength, the probability of finding both electrons in the same quantum dot jumpwise increases from zero to unity.  相似文献   

4.
The observation of quantum-dot resonance fluorescence enabled a new solid-state approach to generating single photons with a bandwidth approaching the natural linewidth of a quantum-dot transition. Here, we operate in the small Rabi frequency limit of resonance fluorescence--the Heitler regime--to generate subnatural linewidth and high-coherence quantum light from a single quantum dot. The measured single-photon coherence is 30 times longer than the lifetime of the quantum-dot transition, and the single photons exhibit a linewidth which is inherited from the excitation laser. In contrast, intensity-correlation measurements reveal that this photon source maintains a high degree of antibunching behavior on the order of the transition lifetime with vanishing two-photon scattering probability. Generating decoherence-free phase-locked single photons from multiple quantum systems will be feasible with our approach.  相似文献   

5.
王立民  罗莹  马本堃 《物理学报》2001,50(2):278-286
采用推广的LCAO方法和有限元方法计算了两个相同量子点组成的双量子点分子的电子结构,结果表明这种人造分子间的相互作用随两个量子点中心之间距离的变化可实现由共价键向离子键的转变.对于两个不同的量子点组成的双量子点分子,利用有限元方法计算了两个量子点中心之间距离、量子点受限势高度以及量子点半径对这种人造分子的电子结构的影响,定性地说明了Oosterkamp等人的实验现象. 关键词: 量子点分子 电子结构 共价键 离子键  相似文献   

6.
Single photons produced by fundamentally dissimilar physical processes will in general not be indistinguishable. We show how photons produced from a quantum dot and by parametric down-conversion in a nonlinear crystal can be manipulated to be indistinguishable. The measured two-photon coalescence probability is 16%, and is limited by quantum-dot decoherence. Temporal filtering to the quantum-dot coherence time and accounting for detector time response increases this to 61% while retaining 25% of the events. This technique can connect different elements in a scalable quantum network.  相似文献   

7.
We study the quasibound states in a graphene quantum-dot structure generated by the single-, double-, and triple-barrier electrostatic potentials. It is shown that the strongest quasibound states are mainly determined by the innermost barrier. Specifically, the positions of the quasibound states are determined by the barrier height, the number of the quasibound states is determined by the quantum-dot radius and the angular momentum, and the localization degree of the quasibound states is influenced by the width of the innermost barrier, as well as the outside barriers. Furthermore, according to the study on the double- and triple-barrier quantum dots, we find that an effective way to generate more quasibound states with even larger energy level spacings is to design a quantum dot defined by many concentric barriers with larger barrier-height differences. Last, we extend our results into the quantum dot of many barriers, which gives a complete picture about the formation of the quasibound states in the kind of graphene quantum dot created by many concentric potential barrier rings.  相似文献   

8.
The problems on simulation of a stressed-strained state in epitaxial quantum-dot heterostructures with and without coating are considered. Within the framework of the continuum approach, a mechanical-mathematical model of a quantum dot is developed. The stressed-strained state in a heterostructure with a quantum dot located under the coating is simulated within the developed model using the well-known analytical solution to the problem on inclusion of the corresponding shape. An isolated quantum dot in the absence of coating is simulated by a set of elastic dipoles uniformly distributed over the region of elastic half-space matching the quantum dot base. Within the model, the problem on deformation of the quantum-dot heterostructure without coating is analytically solved. The analytical solution is used to analyze the stressed-strained state in the structure under consideration.  相似文献   

9.
Semiconductor quantum dots are among the leading candidates for next-generation nanoscale devices due to their tunable size, shape, and low energy consumption. Here we apply quantum optimal control theory to coherently manipulate the single-electron charge distribution in quantum-dot lattices of various sizes. In particular, we show that to control the charge distribution it is sufficient to optimize the gate voltage acting on a single quantum dot in the lattice. We generally find yields around 99% in the picosecond time scale when using realistic models for the quantum-dot lattices on a real-space grid. We analyze and discuss both the limitations of the model regarding the gate parameters as well as the potential of the scheme for applications as quantum-dot cellular automata.  相似文献   

10.
The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.  相似文献   

11.
External electric field effects on the optical rectification coefficient of an exciton confined in a spherical parabolic quantum dot are theoretically investigated. To this end, energy eigenvalues and eigenfunctions of the system are calculated, using the direct matrix diagonalization method. The compact-density matrix approach and an iterative method are used to find the optical rectification coefficient of a typical GaAs parabolic quantum dot. The results show that the optical rectification coefficient strongly depends on the confinement frequency and the magnitude of the electric field. Moreover, the peak value of this optical quantity is shifted to the aspect of high energy when the influence of the electric field is considered.  相似文献   

12.
In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed.The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.  相似文献   

13.
V. A. Burdov 《JETP Letters》2000,71(9):391-394
The two-electron dynamics in a symmetric double quantum dot placed in a onstant electric field is considered. It is shown that, despite the Coulomb blockade, interdot electron-density oscillations are possible. In these oscillations, a charge equal to the charge of a single electron is periodically transferred from one quantum dot to the other.  相似文献   

14.
The field and temperature dependence of the probability of two-dimensional dissipative tunneling is studied in the framework of one-instanton approximation for a model double-well oscillator potential in an external electric field at finite temperature with account for the influence of two local phonon modes for quantum dots in a system of a combined atomic force and a scanning tunneling microscope. It is demonstrated that in the mode of synchronous parallel transfer of tunneling particles from the cantilever tip to the quantum dot the two local phonon modes result in the occurrence of two stable peaks in the curve of the 2D dissipative tunneling probability as a function of the field. Qualitative comparison of the theoretical curve in the limit of weak dissociation and the experimental current–voltage characteristic for quantum dots that grow from colloidal gold under a cantilever tip at the initial stage of quantum-dot formation when the quantum dot size does not exceed 10 nm is performed. It is established that one of the two stable peaks that correspond to interaction of tunneling particles with two local phonon modes in the temperature dependence of the 2D dissipative tunneling probability can be split in two, which corresponds to the tunneling channel interference mechanism. It is found that the theoretically predicted and experimentally observed mode of quantum beats occurs near the bifurcation point.  相似文献   

15.
A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.  相似文献   

16.
Using the perturbation method and the effective-mass approximation, we studied the combined effects of hydrostatic pressure and temperature on Raman scattering in a disc-shaped quantum dot with a parabolic potential in the presence of an electric field. The differential cross-section involved in this process is calculated. Numerical calculations on a typical GaAs quantum dot are performed. The results show that not only the impurity but also the temperature and the hydrostatic pressure have an influence on the differential cross-section of the system.  相似文献   

17.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

18.
We demonstrate that a quantum-dot cellular automata device can be fabricated using electron beam lithographically defined gates on GaAs/AlGaAs heterostructure materials, and that by tuning the four quantum dot (J. Phys. C: Solid State Phys. 21 (1988) L893) system polarization of one double dot can lead to polarization in the neighboring double dot (Phys. Rev. B 67 (2003) 033302). The polarization is detected using a 1-D or 0-D channel defined next to one pair of double dots which acts as a non-invasive voltage probe (Phys. Rev. Lett. 70 (1993) 1311). Ultimately a cellular automata device should be isolated from reservoirs to prevent charge fluctuations caused by co-tunneling. The non-invasive voltage probe is used to show that coupled double dots isolated from reservoirs can be made to have a sharper polarization transition. By studying the broadening of the polarization signal from a coupled double dot system isolated from reservoirs, we deduce the charge dephasing times for intra dot scattering to be more than 0.2 ns (Phys. Rev. B 67 (2003) 073302).  相似文献   

19.
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schr?dinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.  相似文献   

20.
The possibility of providing for a quantum control of electron states by means of a weak electric field (constant or alternating) acting upon a system is studied in a nondissipative approximation for a system of two electrons in a double quantum dot (QD) under Coulomb blocking conditions. It is shown that the Coulomb repulsion facilitates controlled transition of the system from a symmetric (one electron in each QD) to asymmetric (both electrons in one QD) electron configuration under the action of a resonance alternating field or a slowly varying (quasi-constant) field. In the absence of Coulomb repulsion, two electrons can be localized in the same QD only under the action of a strong electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号