首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We find clear evidence for deviations from omega k scaling of the conductivity towards omega k/T scaling at low Matsubara frequencies omega k. By careful analytic continuation using Padé approximants we show that this behavior carries over to the real frequency axis where the conductivity scales with omega/T at small frequencies and low temperatures. We estimate the universal dc conductivity to be sigma* = 0.45(5)Q2/h, distinct from previous estimates in the T = 0, omega/T > 1 limit.  相似文献   

2.
We report a measurement of the excitation spectrum omega(k) and the static structure factor S(k) of a Bose-Einstein condensate. The excitation spectrum displays a linear phonon regime, as well as a parabolic single-particle regime. The linear regime provides an upper limit for the superfluid critical velocity, by the Landau criterion. The excitation spectrum agrees well with the Bogoliubov spectrum in the local density approximation, even close to the long-wavelength limit of the region of applicability. Feynman's relation between omega(k) and S(k) is verified, within an overall constant.  相似文献   

3.
A system of nonlocal electron transport equations for electrostatic perturbations in (omega,k) space in a high-Z plasma is derived from the Fokker-Planck equation for arbitrary relations between the time, space, and collisionality scales. The closed scheme for obtaining the longitudinal plasma susceptibility epsilon(omega,k) in the entire (omega,k) plane is proposed. Regions in the (omega,k) plane have been mapped for problems such as the relaxation of the local temperature enhancement with a time-dependent heat conductivity. The electron dielectric permittivity has been calculated over the entire range of parameters, including the transition region between Vlasov and Fokker-Planck equation solutions.  相似文献   

4.
反式聚乙炔链色散关系的维度效应   总被引:5,自引:3,他引:2       下载免费PDF全文
利用经典力学方法研究了二维反式聚乙炔链的光学模和声学模的维度效应.链的二聚化引起系统的对称性降低,从而导致光频支格波和声频支格波的宽度(ω2+(k=0)-ω2-(k=0))明显变窄,而对BZ边界面上两支格波的间隙(ω2+(k=π/a)-ω2-(k=π/a))几乎没有影响.  相似文献   

5.
The current noise density S2 of a conductor in equilibrium, the Johnson noise, is determined by its temperature T: S2 = 4k(B)TG, with G the conductance. The sample's noise temperature T(N) = S2/(4k(B)G) generalizes T for a system out of equilibrium. We introduce the "noise thermal impedance" of a sample as the ratio deltaT(N)omega/deltaP(J)omega of the amplitude deltaT(N)omega of the oscillation of T(N) when heated by an oscillating power deltaP(J)omega at frequency omega. For a macroscopic sample, it is the usual thermal impedance. We show for a diffusive wire how this (complex) frequency-dependent quantity gives access to the electron-phonon interaction time in a long wire and to the diffusion time in a shorter one, and how its real part may also give access to the electron-electron inelastic time. These times are not simply accessible from the frequency dependence of S2 itself.  相似文献   

6.
We study the low-energy behavior of QCD Green functions in the limit that the baryon chemical potential is much larger than the QCD scale parameter LambdaQCD. We show that there is a systematic low-energy expansion in powers of (omega/m)(1/3), where omega is the energy and m is the screening scale. This expansion is valid even if the effective quark-gluon coupling g is not small. The expansion is purely perturbative in the magnetic regime |k| > k0. If the external momenta and energies satisfy |k| approximately k0, planar, Abelian ladder diagrams involving the full quark propagator have to be resummed but the corresponding Dyson-Schwinger equations are closed.  相似文献   

7.
The effect of spatial dispersion on the electromagnetic properties of a metamaterial consisting of a three-dimensional mesh of crossing metallic wires is reported. The effective dielectric permittivity tensor epsilon(ij)(omega, k) of the wire mesh is calculated in the limit of small wavenumbers. The procedure for extracting the spatial dispersion from the omega versus k dependence for electromagnetic waves propagating in the bulk of the metamaterial is developed. These propagating modes are identified as similar to the longitudinal (plasmon) and transverse (photon) waves in a plasma. Spatial dispersion is found to have the most dramatic effect on the surface waves that exist at the wire mesh-vacuum interface.  相似文献   

8.
We calculate the in-plane modes of the vortex lattice in a rotating Bose condensate, from the slowly rotating to mean-field quantum Hall limits. The Tkachenko mode frequency, linear in wave vector k for lattice rotational velocities Omega much smaller than the lowest sound wave frequency in a finite system, becomes quadratic in k in the opposite limit. The system also supports an inertial mode of frequency >or=2omega. The calculated frequencies are in excellent agreement with recent observations of Tkachenko modes by Phys. Rev. Lett., 91, 100402 (2003)].  相似文献   

9.
From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency, and the Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n(1),n(2)) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega(RBM)=(214.4+/-2) cm(-1) nm/d+(18.7+/-2) cm(-1). In contrast to luminescence experiments we observe all chiralities including zigzag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab initio calculations.  相似文献   

10.
We consider the dynamics of the mean-field polaron in the limit of infinite phonon frequency \(\omega \rightarrow \infty \). This is a singular limit formally leading to a Schrödinger–Poisson system that is equivalent to the nonlinear Choquard equation. By establishing estimates between the approximation obtained via the Choquard equation and true solutions of the original system we show that the Choquard equation makes correct predictions about the dynamics of the polaron mean-field model for small values of \(\varepsilon = 1/\omega \).  相似文献   

11.
A stochastic model for a first-order metabolizing system which was studied in the deterministic sense by Branson and others is formulated and a detailed study of the random integral equation arising in the probabilistic model is presented. The equation is used to describe the evolution in time of the amount of metabolite present in the system. Specifically we present a study of the random integral equation of the Volterra type given by $$M\left( {t; \omega } \right) = M\left( {0; \omega } \right)e^{ - et} + \int_0^t {R\left( {\tau ; \omega } \right) e^{ - e\left( {t - \tau } \right)} d\tau , } t \geqslant 0$$ whereM(t; ω) is an unknown random function giving the amount of metabolite in the system at time t ≥ 0. This equation can be expressed in the general form $$x\left( {t; \omega } \right) = h\left( {t; \omega } \right) + \int_0^t {k\left( {t, \tau ; \omega } \right) f\left( {\tau , x\left( {\tau ; \omega } \right)} \right) d\tau } t \geqslant 0$$ which is of a type whose theoretical aspects have recently been studied by the present authors using as a basis the techniques of probabilistic functional analysis. Conditions are derived under which there exists a unique random solution to the above equation. The usefulness of the model is illustrated using computer simulation by considering a one-organ model, an organ-heart model, and a multicompartment model.  相似文献   

12.
《中国物理 B》2021,30(5):57503-057503
We used the Jordan–Wigner transform and the invariant eigenoperator method to study the magnetic phase diagram and the magnetization curve of the spin-1/2 alternating ferrimagnetic diamond chain in an external magnetic field at finite temperature. The magnetization versus external magnetic field curve exhibits a 1/3 magnetization plateau at absolute zero and finite temperatures, and the width of the 1/3 magnetization plateau was modulated by tuning the temperature and the exchange interactions. Three critical magnetic field intensities H_(CB), H_(CE) and H_(CS) were obtained, in which the H_(CB) and H_(CE) correspond to the appearance and disappearance of the 1/3 magnetization plateau, respectively, and the higher H_(CS) correspond to the appearance of fully polarized magnetization plateau of the system. The energies of elementary excitation ωσ,k(σ = 1, 2, 3) present the extrema of zero at the three critical magnetic fields at 0 K, i.e., [hω_(3,k)(HCB)]_(min)= 0, [hω_(2,k)(H_(CE))]_(max)= 0 and [hω _(2,k)(H_(CS))]_(min)= 0, and the magnetic phase diagram of magnetic field versus different exchange interactions at 0 K was established by the above relationships. According to the relationships between the system's magnetization curve at finite temperatures and the critical magnetic field intensities, the magnetic field-temperature phase diagram was drawn. It was observed that if the magnetic phase diagram shows a three-phase critical point, which is intersected by the ferrimagnetic phase, the ferrimagnetic plateau phase, and the Luttinger liquid phase, the disappearance of the1/3 magnetization plateau would inevitably occur. However, the 1/3 magnetization plateau would not disappear without the three-phase critical point. The appearance of the 1/3 magnetization plateau in the low temperature region is the macroscopic manifestations of quantum effect.  相似文献   

13.
14.
The dynamic structure factor &Stilde;(k,omega) and the two-particle distribution function g(r,t) of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multiphonon excitation and absorption. The static radial two-particle distribution function g(r) is calculated for classical (T greater, similarPlanck's over 2piomega(p), where omega(p) is the ion plasma frequency) and quantum (T相似文献   

15.
Two-dimensional Hall magnetohydrodynamic simulations are used to determine the magnetic reconnection rate in the Hall limit. The simulations are run until a steady state is achieved for four initial current sheet thicknesses: L=1,5,10, and 20c/omega(pi), where c/omega(pi) is the ion inertial length. It is found that the asymptotic (i.e., time independent) state of the system is nearly independent of the initial current sheet width. Specifically, the Hall reconnection rate is weakly dependent on the initial current layer width and is partial differential Phi/ partial differential t less, similar 0.1V(A0)B0, where Phi the reconnected flux, and V(A0) and B0 are the Alfvén velocity and magnetic field strength in the upstream region. Moreover, this rate appears to be independent of the scale length on which the electron "frozen-in" condition is broken (as long as it is 相似文献   

16.
We study the dynamics of charged particles in the presence of two electrostatic waves propagating obliquely to an ambient magnetic field. The presence of a second wave makes the problem a two-dimensional and time-dependent one with a complicated phase space behavior. We derive a set of difference equations (maps) for the nonrelativistic particle motion limit and numerically study them to elucidate the various aspects of the phase space dynamics. For the general case of oblique propagation, we observe synergistic effects leading to the lowering of the stochasticity threshold and the concomitant reduction in electric field amplitudes for particle heating applications. These results can be understood in terms of the resonance structures associated with the two waves and we obtain approximate analytic expressions for the thresholds. For the degenerate case of omega(1)=nOmega,omega(2)=mOmega (where omega(1),omega(2) are the frequencies of the two waves, Omega is the cyclotron frequency and n,m are integers) and strictly perpendicular propagation, the problem simplifies to a one-and-one-half-dimensional one. We observe the presence of stochastic webs in this situation. (c) 1996 American Institute of Physics.  相似文献   

17.
Equations for the temperature dependence of the spectral densities J(is)(m)(momega(I) +/-omega(T)), where m=1, 2, omega(I) and omega(T) are the resonance and tunnel splitting angular frequencies, in the presence of a complex motion, have been derived. The spin pairs of the protons or deuterons of the methyl group perform a complex motion consisting of three component motions. Two of them involve mass transportation over the barrier and through the barrier. They are characterized by k((H)) (Arrhenius) and k((T)) (Schr?dinger) rate constants, respectively. The third motion causes fluctuations of the frequencies (nomega(I)+/-omega(T)) and it is related to the lifetime of the methyl spin at the energy level influenced by the rotor-bath interactions. These interactions induce rapid transitions, changing the symmetry of the torsional sublevels either from A to E or from E(a) to E(b). The correlation function for this third motion (k((omega)) rate constant) has been proposed by Müller-Warmuth et al. The spectral densities of the methyl group hindered rotation (k((H)), k((T)) and k((omega)) rate constants) differ from the spectral densities of the proton transfer (k((H)) and k((T)) rate constants) because three compound motions contribute to the complex motion of the methyl group. The recently derived equation [Formula: see text] , where [Formula: see text] and [Formula: see text] are the fraction and energy of particles with energies from zero to E(H), is taken into account in the calculations of the spectral densities. This equation follows from Maxwell's distribution of thermal energy. The spectral densities derived are applied to analyse the experimental temperature dependencies of proton and deuteron spin-lattice relaxation rate in solids containing the methyl group. A wide range of temperatures from zero Kelvin up to the melting point is considered. It has been established that the motion characterized by k((omega)) influences the spin-lattice relaxation up to the temperature T(tun) only. This temperature is directly determined by the equation C(p)T=E(H) (thermal energy=activation energy), where C(p) is the molar heat capacity. Probably the cessation of the third motion is a result of the de Broglie wavelength related to this motion becoming too short. As shown recently, the potential barrier can be an obstacle for the de Broglie wave. The theoretical equations derived in this paper are compared to those known in the literature.  相似文献   

18.
A system is considered consisting of a harmonic oscillator and a field interacting with it. A quadratic Lagrangian is used, so that the model is exactly solvable. Under some conditions, the model exhibits a dissipative behavior of a selected oscillator. A canonical transformation is found which brings the Hamiltonian to a diagonal form, which is used to compute the quantum correlation and spectral functions of the oscillator fluctuations. It is found that the model allows for a low-frequency spectrum of the form for the driving force, and for the oscillator coordinate (Flicker noise).Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 13–18, October, 1990.  相似文献   

19.
On a high-mobility 2D electron gas we have observed, in strong magnetic fields (omega(c)tau>1), a parabolic negative magnetoresistance caused by electron-electron interactions in the regime of k(B)Ttau/ variant Planck's over 2pi approximately 1, which is the transition from the diffusive to the ballistic regime. From the temperature dependence of this magnetoresistance the interaction correction to the conductivity deltasigma(ee)(xx)(T) is obtained in the situation of a long-range fluctuation potential and strong magnetic field. The results are compared with predictions of the new theory of interaction-induced magnetoresistance.  相似文献   

20.
The behavior of seismicity in the area candidate to suffer a main shock is investigated after the observation of the Seismic Electric Signal activity until the impending main shock. This is based on the view that the occurrence of earthquakes is a critical phenomenon to which statistical dynamics may be applied. In the present work, analysing the time series of small earthquakes, the concept of natural time chi was used and the results revealed that the approach to criticality itself can be manifested by the probability density function (PDF) of kappa(1) calculated over an appropriate statistical ensemble. Here, kappa(1) is the variance kappa(1)(=-(2)) resulting from the power spectrum of a function defined as Phi(omega)= summation operator(k=1)(N) p(k) exp(iomegachi(k)), where p(k) is the normalized energy of the k-th small earthquake and omega the natural frequency. This PDF exhibits a maximum at kappa(1) asymptotically equal to 0.070 a few days before the main shock. Examples are presented, referring to the magnitude 6 approximately 7 class earthquakes that occurred in Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号