首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The synthesis and characterisation of the heteroditopic ligand N,N'-bis(3,5-di-tert-butylsalicylidene)-5,6-(1,10-phenanthroline)diamine (DPSalH(2)) bearing a phenanthroline and a bis(salicylidene)diimine cavity are reported. This versatile ligand combines two of the most widely used ligands in coordination chemistry. Sequential metallation of the phenanthroline end with Ru(II) and the salophenic cavity with Cu(II) is described. Electrochemical behaviour of the supramolecular complexes [Ru(bpy)(2)(DPSalH(2))](2+) and [Ru(bpy)(2)(DPSalCu)](2+) are analysed in connection with UV/Vis and EPR spectroscopy. The data for the one-electron-reduced species and the singly oxidised species of the binuclear Ru(II)-Cu(II) complex confirmed the formation of metalloradical complexes. Density functional calculations on the free ligand and the copper-only complex indicate in both cases that the HOMOs and LUMOs are developed on the Schiff base cavity with minor contributions on the bipyridine end. These findings support a bichromophoric character for our ruthenium complexes in the ground state, a necessary condition in the design of supramolecular systems for the study of electron transfer. Photophysical studies indicate fast quenching of the triplet excited state in both complexes, which suggests strong intercomponent excited-state interactions. Evidence is presented that this quenching is due to intramolecular electron transfer, at least in the case of [Ru(bpy)(2)(DPSalH(2))](2+), for which a charge-separated state with a remarkable lifetime of about 30 mus was observed.  相似文献   

2.
Excited states of ruthenium polypyridine-type complexes have always attracted the interest of chemists. We have recently found evidence of a remarkable long-lived excited state (30 micros) for a Ru(II) complex containing a heteroditopic ligand that can be viewed as a fused phenanthroline and salophen ligand.1 To unravel this intriguing electronic property, we have used density functional theory (DFT) calculations to understand the ground-state properties of [(bpy)(2)Ru(LH(2))](2+), where LH(2) represents N,N'-bis(salicylidene)-(1,10-phenanthroline)diamine. Excited singlet and triplet states have been examined by the time-dependent DFT (TDDFT) formalism and the theoretical findings have been compared with those for the parent complex [Ru(bpy)(3)](2+). The outstanding result is the presence of excited states lower in energy than the metal-to-ligand charge-transfer states, originating from intraligand charge transfer (ILCT) from the phenolic rings to the phenanthroline part of the coordinated LH(2). The spin density distribution for the lowest triplet state provides evidence that it is in fact the lowest triplet state of the free ligand. Correlation between the energy level diagram of orbitals for the ground state and that for the (3)ILCT state clearly establishes that the ruthenium retains its formal Ru(II) oxidation state. The quenching of the luminescence and the evidence of the long-lived excited state observed for [(bpy)(2)Ru(LH(2))](2+) are discussed in the light of the computational results.  相似文献   

3.
A pi-extended, redox-active bridging ligand 4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[2,3-a:3',2'-c]phenazine (L) was prepared via direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with 4,7-phenanthroline-5,6-dione. Reactions of L with [Ru(bpy)(2)Cl(2)] afforded its stable mono- and dinuclear ruthenium(II) complexes 1 and 2. They have been fully characterized, and their photophysical and electrochemical properties are reported together with those of [Ru(bpy)(2)(ppb)](2+) and [Ru(bpy)(2)(mu-ppb)Ru(bpy)(2)](4+) (ppb = dipyrido[2,3-a:3',2'-c]phenazine) for comparison. In all cases, the first excited state corresponds to an intramolecular TTF --> ppb charge-transfer state. Both ruthenium(II) complexes show two strong and well-separated metal-to-ligand charge-transfer (MLCT) absorption bands, whereas the (3)MLCT luminescence is strongly quenched via electron transfer from the TTF subunit. Clearly, the transient absorption spectra illustrate the role of the TTF fragment as an electron donor, which induces a triplet intraligand charge-transfer state ((3)ILCT) with lifetimes of approximately 200 and 50 ns for mono- and dinuclear ruthenium(II) complexes, respectively.  相似文献   

4.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

5.
Humbs W  Yersin H 《Inorganic chemistry》1996,35(8):2220-2228
Highly resolved emission, excitation, and resonantly line-narrowed spectra, as well as emission decay properties of [Rh(bpy-h(8))(n)(bpy-d(8))(3-n)](3+) (n = 0, 2, 3; bpy = 2,2'-bipyridine) doped into [Zn(bpy-h(8))(3)](ClO(4))(2) are presented for the first time. [Rh(bpy-h(8))(3)](3+) and [Rh(bpy-d(8))(3)](3+) exhibit one low-lying triplet T(1) at 22 757 +/- 1 and 22 818 +/- 1 cm(-1), respectively (blue shift 61 cm(-1)), while [Rh(bpy-h(8))(2)(bpy-d(8))](3+) has two low-lying triplets at 22 757 +/- 1 and 22 818 +/- 1 cm(-1). The well-resolved vibrational satellite structures show, that the equilibrium positions of the triplet and the singlet ground S(0) state are not very different and that the force constants in T(1) are mostly slightly smaller than in S(0). Moreover, the vibrational satellite structure is strongly dominated by vibrational ligand modes, which demonstrates the pipi character of the corresponding transition. However, the occurrence of several very weak vibrational modes of metal-ligand character displays a small influence of the metal ion. This is supported by the emission decay behavior. [Rh(bpy-h(8))(2)(bpy-d(8))](3+) exhibits an emission which is clearly assignable to the protonated ligand(s), even when the deuterated ligand is selectively excited. Obviously, an efficient intramolecular energy transfer from the deuterated to the protonated ligand(s) occurs, presumably mediated by the small Rh(3+) d-admixture. A so-called "dual emission" is not observed. Moreover, a series of spectroscopic properties of the lowest excited state of [Rh(bpy)(3)](3+) (energies of electronic origins, emission decay times, zero-field splittings, structures of vibrational satellites, etc.) is compared to properties of bpy, [Pt(bpy)(2)](2+), [Ru(bpy)(3)](2+), and [Os(bpy)(3)](2+). This comparison displays in a systematic way the increasing importance of the metal d and/or MLCT character for the lowest excited states and thus provides guidelines for an experimentally based classification. In particular, the lowest excited states of [Rh(bpy)(3)](3+) may be ascribed as being mainly of (3)pipi character confined to one ligand in contrast to the situation found for [Ru(bpy)(3)](2+) where these states are covalently delocalized over the whole complex.  相似文献   

6.
The excited-state dynamics of a transition metal complex, tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)(3)](2+), has been investigated using femtosecond fluorescence upconversion spectroscopy. The relaxation dynamics in these molecules is of great importance in understanding the various ultrafast processes related to interfacial electron transfer, especially in semiconductor nanoparticles. Despite several experimental and theoretical efforts, direct observation of a Franck-Condon singlet excited state in this molecule was missing. In this study, emission from the Franck-Condon excited singlet state of [Ru(bpy)(3)](2+) has been observed for the first time, and its lifetime has been estimated to be 40 +/- 15 fs. Biexponential decays with a fast rise component observed at longer wavelengths indicated the existence of more than one emitting state in the system. From a detailed data analysis, it has been proposed that, on excitation at 410 nm, crossover from higher excited (1)(MLCT) states to the vibrationally hot triplet manifold occurs with an intersystem crossing time constant of 40 +/- 15 fs. Mixing of the higher levels in the triplet state with the singlet state due to strong spin-orbit coupling is proposed. This enhances the radiative rate constant, k(r), of the vibrationally hot states within the triplet manifold, facilitating the upconversion of the emitted photons. The vibrationally excited triplet, which is emissive, undergoes vibrational cooling with a decay time in the range of 0.56-1.3 ps and relaxes to the long-lived triplet state. The results on the relaxation dynamics of the higher excited states in [Ru(bpy)(3)](2+) are valuable in explaining the role of nonequilibrated higher excited sensitizer states of transition metal complexes in the electron injection and other ultrafast processes.  相似文献   

7.
The ruthenium bis(bipyridine) complexes cis-[Ru(bpy)(2)Im(OH(2))](2+), cis-[Ru(bpy)(2)(Im)(2)](2+), cis-[Ru(bpy)(2)(N-Im)(2)](2+), cis-[Ru(dmbpy)(2)Im(OH(2))](2+), cis-[Ru(dmbpy)(2)(N-Im)(OH(2))](2+)(bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, Im = imidazole, N-Im = N-methylimidazole), have been synthesized under ambient conditions in aqueous solution (pH 7). Their electrochemical and spectroscopic properties, absorption, emission, and lifetimes were determined and compared. The substitution kinetics of the cis-[Ru(bpy)(2)Im(OH(2))](2+) complexes show slower rates and have lower affinities for imidazole ligands than the corresponding cis-[Ru(NH(3))(4)Im(OH(2))](2+) complexes. The crystal structures of the monoclinic cis-[Ru(bpy)(2)(Im)(2)](BF(4))(2), space group = P2(1)/a, Z = 4, a = 11.344(1) ?, b = 17.499(3) ?, c = 15.114(3) ?, and beta = 100.17(1) degrees, and triclinic cis-[Ru(bpy)(2)(N-Im)(H(2)O)](CF(3)COO)(2).H(2)O, space group = P&onemacr;, Z = 2, a = 10.432(4) ?, b = 11.995(3) ?, c = 13.912(5) ?, alpha = 87.03(3) degrees, beta = 70.28(3) degrees, and gamma = 71.57(2) degrees, complexes show that these molecules crystallize as complexes of octahedral Ru(II) to two bidentate bipyridine ligands with two imidazole ligands or a water and an N-methylimidazole ligand cis to each other. The importance of these molecules is associated with their frequent use in the modification of proteins at histidine residues and in comparisons of the modified protein derivatives with these small molecule analogs.  相似文献   

8.
Electrostatic forces play an important role in the interaction between large transition metal complexes and lipid bilayers. In this work, a thioether-cholestanol hybrid ligand (4) was synthesized, which coordinates to ruthenium(II) via its sulfur atom and intercalates into lipid bilayers via its apolar tail. By mixing its ruthenium complex [Ru(terpy)(bpy)(4)](2+) (terpy = 2,2';6',2'-terpyridine; bpy = 2,2'-bipyridine) with either the negatively charged lipid dimyristoylphosphatidylglycerol (DMPG) or with the zwitterionic lipid dimyristoylphosphatidylcholine (DMPC), large unilamellar vesicles decorated with ruthenium polypyridyl complexes are formed. Upon visible light irradiation the ruthenium-sulfur coordination bond is selectively broken, releasing the ruthenium fragment as the free aqua complex [Ru(terpy)(bpy)(OH(2))](2+). The photochemical quantum yield under blue light irradiation (452 nm) is 0.0074(8) for DMPG vesicles and 0.0073(8) for DMPC vesicles (at 25 °C), which is not significantly different from similar homogeneous systems. Dynamic light scattering and cryo-TEM pictures show that the size and shape of the vesicles are not perturbed by light irradiation. Depending on the charge of the lipids, the cationic aqua complex either strongly interacts with the membrane (DMPG) or diffuses away from it (DMPC). Back coordination of [Ru(terpy)(bpy)(OH(2))](2+) to the thioether-decorated vesicles takes place only at DMPG bilayers with high ligand concentrations (25 mol %) and elevated temperatures (70 °C). During this process, partial vesicle fusion was also observed. We discuss the potential of such ruthenium-decorated vesicles in the context of light-controlled molecular motion and light-triggered drug delivery.  相似文献   

9.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

10.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

11.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

12.
Dennany L  Keyes TE  Forster RJ 《The Analyst》2008,133(6):753-759
Luminescence quenching of the metallopolymers [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+), both in solution and as thin films, is reported, where bpy is 2,2'-bipyridyl and PVP is poly(4-vinylpyridine). When the metallopolymer is dissolved in ethanol, quenching of the ruthenium excited state, Ru(2+*), within [Ru(bpy)(2)(PVP)(10)](2+) by [Os(bpy)(3)](2+) proceeds by a dynamic quenching mechanism and the rate constant is (1.1 +/- 0.1) x 10(11) M(-1) s(-1). This quenching rate is nearly two orders of magnitude larger than that found for quenching of monomeric [Ru(bpy)(3)](2+) under the same conditions. This observation is interpreted in terms of an energy transfer quenching mechanism in which the high local concentration of ruthenium luminophores leads to a single [Os(bpy)(3)](2+) centre quenching the emission of several ruthenium luminophores. Amplifications of this kind will lead to the development of more sensitive sensors based on emission quenching. Quenching by both [Os(bpy)(3)](2+) and molecular oxygen is significantly reduced within a thin film of the metallopolymer. Significantly, in both optically driven emission and electrogenerated chemiluminescence, emission is observed from both ruthenium and osmium centres within [Ru(bpy)(2)(PVP)(10)Os(bpy)(2)](4+) films, i.e. the ruthenium emission is not quenched by the coordinated [Os(bpy)(2)](2+) units. This observation opens up new possibilities in multi-analyte sensing since each luminophore can be used to detect separate analytes, e.g. guanine and oxoguanine.  相似文献   

13.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

14.
He B  Wenger OS 《Inorganic chemistry》2012,51(7):4335-4342
A molecular ensemble composed of a phenothiazine (PTZ) electron donor, a photoisomerizable dithienylethene (DTE) bridge, and a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) electron acceptor was synthesized and investigated by optical spectroscopic and electrochemical means. Our initial intention was to perform flash-quench transient absorption studies in which the Ru(bpy)(3)(2+) unit is excited selectively ("flash") and its (3)MLCT excited state is quenched oxidatively ("quench") by excess methylviologen prior to intramolecular electron transfer from phenothiazine to Ru(III) across the dithienylethene bridge. However, after selective Ru(bpy)(3)(2+1)MLCT excitation of the dyad with the DTE bridge in its open form, (1)MLCT → (3)MLCT intersystem crossing on the metal complex is followed by triplet-triplet energy transfer to a (3)π-π* state localized on the DTE unit. This energy transfer process is faster than bimolecular oxidative quenching with methylviologen at the ruthenium site (Ru(III) is not observed); only the triplet-excited DTE then undergoes rapid (10 ns, instrumentally limited) bimolecular electron transfer with methylviologen. Subsequently, there is intramolecular electron transfer with PTZ. The time constant for formation of the phenothiazine radical cation via intramolecular electron transfer occurring over two p-xylene units is 41 ns. When the DTE bridge is photoisomerized to the closed form, PTZ(+) cannot be observed any more. Irrespective of the wavelength at which the closed isomer is irradiated, most of the excitation energy appears to be funneled rapidly into a DTE-localized singlet excited state from which photoisomerization to the open form occurs within picoseconds.  相似文献   

15.
Two mixed ligand complexes of ruthenium(ii) [Ru(bzimpy)(bpy)(OH(2))](2+) (1) and [Ru(bzimpy)(phen)(OH(2))](2+) (2) have been synthesized and characterized by FAB mass, (1)H NMR, cyclic voltammetry and spectroelectrochemical measurements. Controlled potential electrolysis of these complexes results in the conversion of ruthenium(ii) to ruthenium(iii) at 0.6 V and ruthenium(iii) to ruthenium(iv) at 0.8 V vs. SCE. The binding constant of these complexes with DNA has been determined electrochemically and found to be (3.58 +/- 0.25) x 10(4) and (2.87+/- 0.2) x 10(4) M(-1). Viscosity measurements suggest that these complexes bind with DNA through intercalation. Such intercalative binding to DNA has been found to induce chirality to the two complexes. Electrochemically generated ruthenium(iv) species of these complexes have been found to bring about oxidative cleavage in DNA.  相似文献   

16.
New dinuclear asymmetric ruthenium complexes of the type [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+/5+) (bpy = 2,2'-bipyridine; 5-CNphen = 5-cyano-1,10-phenanthroline) have been synthesized and characterized by spectroscopic, electrochemical, and photophysical techniques. The structure of the cation [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+) has been determined by X-ray diffraction. The mononuclear precursor [Ru(bpy)(2)(5-CNphen)](2+) has also been prepared and studied; while its properties as a photosensitizer are similar to those of [Ru(bpy)(3)](2+), its luminescence at room temperature is quenched by a factor of 5 in the mixed-valent species [(bpy)(2)Ru(II)(5-CNphen)Ru(III)(NH(3))(5)](5+), pointing to the occurrence of intramolecular electron-transfer processes that follow light excitation. From spectral data for the metal-to-metal charge-transfer transition Ru(II) --> Ru(III) in this latter complex, a slight electronic interaction (H(AB) = 190 cm(-1)) is disclosed between both metallic centers through the bridging 5-CNphen.  相似文献   

17.
Amidate-bridged diplatinum(II) entities [Pt(2)(bpy)(2)(μ-amidato)(2)](2+) (amidate = pivalamidate and/or benzamidate; bpy = 2,2'-bipyridine) were covalently linked to one or two Ru(bpy)(3)(2+)-type derivatives. An amide group was introduced at the periphery of Ru(bpy)(3)(2+) derivatives to give metalloamide precursors [Ru(bpy)(2)(BnH)](2+) (abbreviated as RuBnH, n = 1 and 2), where deprotonation of amide BnH affords the corresponding amidate Bn, B1H = 4-(4-carbamoylphenyl)-2,2'-bipyridine, and B2H = ethyl 4'-[N-(4-carbamoylphenyl)carbamoyl]-2,2'-bipyridine-4-carboxylate. From a 1:1:1 reaction of [Pt(2)(bpy)(2)(μ-OH)(2)](NO(3))(2), RuBnH, and pivalamide, trinuclear complexes [Pt(2)(bpy)(2)(μ-RuBn)(μ-pivalamidato)](4+) (abbreviated as RuBn-Pt(2)) were isolated and characterized. Tetranuclear complexes [Pt(2)(bpy)(2)(μ-RuBn)(2)](6+) (abbreviated as (RuBn)(2)-Pt(2)) were separately prepared and characterized in detail. The quenching of the triplet excited state of the Ru(bpy)(3)(2+) derivative (i.e., Ru*(bpy)(3)(2+)) upon tethering the Pt(2)(bpy)(2)(μ-amidato)(2)(2+) moiety is strongly enhanced in RuB1-Pt(2) and (RuB1)(2)-Pt(2), while it is only slightly enhanced in RuB2-Pt(2) and (RuB2)(2)-Pt(2). These are partly explained by the driving forces for the electron transfer from the Ru*(bpy)(3)(2+) moiety to the Pt(2)(bpy)(2)(μ-amidato)(2)(2+) moiety (ΔG°(ET)); the ΔG°(ET) values for RuB1-Pt(2), (RuB1)(2)-Pt(2), RuB2-Pt(2), and (RuB2)(2)-Pt(2) are estimated as -0.01, 0.00, +0.22, and +0.28 eV, respectively. The considerable difference in the photochemical properties of the B1- and B2-bridged systems were further examined based on the emission decay and transient absorption measurements, which gave results consistent with the above conclusions.  相似文献   

18.
Intermolecular electron and energy transfer from a light-harvesting metallodendrimer [Ru[bpy(C-450)(4)](3)](2+), where bpy(C-450)(4) is a 2,2'-bipyridine derivative containing 4 coumarin-450 units connected together through aryl ether linkages, is observed in acetonitrile solutions at room temperature. The model complex [Ru(dmb)(3)](2+), where dmb is 4,4'-dimethyl-2,2'-bipyridine, is included for quantitative comparison. The excited states of both compounds are metal-to-ligand charge transfer in nature and participate in excited-state electron and triplet energy transfer processes. Quenching constants were determined from luminescence and time-resolved absorption experiments at constant ionic strength. [Ru[bpy(C-450)(4)](3)](2+) displays significantly slower quenching rates to molecular oxygen and methyl viologen relative to the other processes investigated. Triplet energy transfer from [Ru[bpy(C-450)(4)](3)](2+) to 9-methylanthracene is quantitatively indistinguishable from [Ru(dmb)(3)](2+) while reductive electron transfer from phenothiazine was slightly faster in the former. With the exception of dioxygen quenching, our results indicate that the current dendritic structure is ineffective in shielding the core from bimolecular electron and triplet energy transfer reactions. Electrochemical measurements of [Ru[bpy(C-450)(4)](3)](2+) reveal irreversible oxidative processes at potentials slightly negative to the Ru(III/II) potential that are assigned to oxidations in the dendritic structure. Excited-state oxidative electron-transfer reactions facilitate this process resulting in the reduction of ground-state Ru(III) to Ru(II) and the trapping of the methyl viologen radical cation (MV(*+)) when methyl viologen serves as the quencher. This process generates a minimum of 9 MV(*+)'s for every [Ru[bpy(C-450)(4)](3)](2+) molecule and disassembles the metallodendrimer, resulting in the production of a [Ru(dmb)(3)](2+)-like species and "free" C-450-like dyes.  相似文献   

19.
Nanocrystalline thin films of TiO2 cast on an optically transparent indium tin oxide glass were sensitized with ruthenium homo- and heterobinuclear complexes, [LL'Ru(BL)RuLL']n+ (n = 2, 3), where L and L' are 4,4'-dicarboxy-2,2'-bipyridine (dcb) and/or 2,2'-bipyridine (bpy) and BL is a rigid and linear heteroaromatic entity (tetrapyrido[3,2-a:2',3'-c:3",2"-h:2'",3'"-j]phenazine (tpphz) or 1,4-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene (bfimbz)). The photophysical behavior of the RuII-RuII diads in solution indicated the occurrence of intercomponent energy transfer from the upper-lying Ru --> bpy charge-transfer (CT) excited state of the Ru(bpy)(2) moiety to the lower-lying Ru --> dcb CT excited state of the Ru(bpy)(dcb) (or Ru(dcb)(2)) subunit in the heterobinuclear complexes. These sensitizer diads adsorbed on nanostructured TiO2 surfaces in a perpendicular or parallel attachment mode. Adsorption was through the dcb ligands on one or both chromophoric subunits. The behavior of the adsorbed species was studied by nanosecond time-resolved transient absorption and emission spectroscopy, as well as by photocurrent measurements. In the TiO2-adsorbed samples where BL was bfimbz, the electron injection kinetics was very fast and could not be resolved because an electron is promoted from the metal center to the dcb ligand directly linked to the semiconductor. In the TiO2-adsorbed samples where BL was tpphz, for which, in the excited state, a BL localization of the lowest-lying metal-to-ligand charge transfer (MLCT) is observed, slower injection rates (9.5 x 10(7) s(-1) in [(bpy)(2)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2 and 5.5 x 10(7) s(-1) in [(bpy)(dcb)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2) were obtained. Among the systems, the heterotriad assembly [(bpy)(2)Ru(bfimbz)Ru(bpy)(dcb(2-))](2+)/TiO2 gave the best photovoltaic performance. In the first case, this was attributed to a fast electron injection initiated from a dcb-localized MLCT; in the second case, this is attributed to improved molecular orientation on the surface, which was due to rigidity and, at the same time, linearity of the heterotriad system, resulting in a slower charge recombination between the injected electron and the hole.  相似文献   

20.
In order to test the pertinence of the density functional theory to interpret the photophysical properties of ruthenium(II) polypyridine-type complexes, DFT and TDDFT calculations are performed both on the isolated molecule and in solution media described by the dielectric-like polarized continuum model (PCM). This study is focused on three isoelectronic complexes: [Ru(bpy)(2)(PhenImHPh)](2+) (II), where PhenImHPh represents the 2-(3,5-ditertbutylphenyl)imidazo[4,5-f][1,10]phenanthroline ligand, as well as [Ru(bpy)2(PhenImPh)]+ (I), and [Ru(bpy)(2)(PhenImH2Ph)](3+) (III), obtained by changing the protonic state of the imidazole ring. The structural and electronic properties of the ground and lowest triplet states are fully characterized in vacuo and in water solution, and the absorption spectra in the visible region are also investigated by TDDFT. The theoretical data are compared to the electrochemistry, UV-visible, and photophysical experiments to assess the validity and limits of each type of calculation. The choice of the functional is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号