首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity and thermopower are reported for a hole doped Eu1.5Ce0.5RuSr2Cu2O10+δ sample that has been annealed at 1100 K under an oxygen pressure of 54 atm. At Tc=45 K superconductivity and weak ferromagnetism coexist (Tm=180 K). Weak features in the thermopower, S(T), and thermal conductivity, κ(T), are observed both at Tm and at T*=140 K. The thermopower begins to decrease sharply toward zero at Tc, and there is an extremely sharp increase of about 30% in the thermal conductivity at Tc. This “first order” transition may be related to the sudden appearance of a spontaneous vortex phase at Tc. A small shoulder is observed in κ(T) in the temperature range T=5–13 K.  相似文献   

2.
To study a behavior of the thermal conductivity near Tc specific heat and thermal diffusivity of the YBa2Cu3O7−δ high-Tc ceramics were simultaneously measured. Close to Tc = 92.30 K the thermal diffusivity and the thermal conductivity discovered minima and the specific heat – maximum. Quantitative analysis of the influence of thermodynamical fluctuations showed the same power laws with Gaussian exponent equal to 0.5 and existing of crossover from the 3D Gaussian to 3D XY critical behavior in the specific heat and thermal conductivity at the approach to Tc. To explain the minimum in thermal conductivity at Tc we propose a mechanism of scattering of phonons on the superconducting fluctuations.  相似文献   

3.
We have measured the paramagnetic (PM) resonance behavior as a function of temperature for various manganese perovskites (La,Y)2/3(Ca,Ba)1/3MnO3 with an average A-site size rA basically covering the whole region of ferromagnetic (FM) metallic ground state. We show that at least three regions with different magnetic behaviors can be distinguished by two phase lines: TonsetrA and TcrA. For each given rA, the complete PM and long-range FM behaviors appear above Tonset and below Tc, respectively; while some anomalous PM behaviors appear for the intermediate temperature range of Tonset<T<Tc . A possible magnetic transition process is discussed in order of decreasing temperature from high-T complete paramagnetism to low-T long-range ferromagnetism.  相似文献   

4.
Superconducting samples with nominal composition Bi1.6Pb0.4Sr2Ca2Cu3Oδ were prepared by the conventional solid-state reaction technique. The samples have been characterized by X-ray diffraction, dc electrical resistivity, ac magnetic susceptibility and thermal conductivity. The X-ray diffraction studies were done at room temperature and the lattice constants of the material were determined by indexing all the peaks. All the above measurements show that, there exists two phases i.e. high-Tc (2 2 2 3) and low-Tc (2 2 1 2). The information obtained from dc electrical resistivity data agrees with ac magnetic susceptibility measurements. The onset temperature Tc (onset) and zero resistivity temperature Tc (R = 0) of the samples remains within the temperature 120 ± 1 K and 103 ± 1 K. Thermal conductivity has been measured with a transient plane source (TPS) technique in the temperature range 77–300 K. The estimation of the electrical resistivity change due to scattering by phonons and impurities has been discussed. An increase in thermal conductivity is observed above and below Tc (R = 0). The electron–phonon scattering time, phonon-limited mobility and the size of the electron–phonon constant are also calculated. Wiedemann–Franz law is applied to gain prediction about the magnitude of electronic and phonon contribution to the total thermal conductivity of the samples. It is observed that heat is mainly conducted by the phonons in this system.  相似文献   

5.
We have investigated the microwave response at 45 GHz in an organic superconductor λ-(BEDT-TSF)2GaCl4 with Tc = 4.8 K. We determine the μ0Hc2T phase diagram from microwave loss and find that the superconducting state is in the pure limit (l/ξGL  10). Although the real part of the complex conductivity (=σ1 + iσ2) does not show a coherence peak just below Tc, the London penetration depth completely saturates at low temperatures down to T/Tc = 0.2, which may provide an evidence for a conventional s-wave pairing. In the metallic state below about 50 K, (parallel to the c-axis) deviates downward from , while σ2, which should be zero in a conventional metal, increases exponentially toward Tc. In spite of the fact that the Hagen–Rubens limit is well satisfied as far as the dc conductivity is concerned, a Drude model is unable to explain the large positive σ2. In order to explain such anomalies in the metallic state, we propose a possible existence of so-called a pseudogap near a Fermi level. The anomalous increase of the positive σ2 may be attributed to an appearance of pre-formed electron pairs in the pseudogap state. This appearance can be regarded as a precursor to the superconducting transition. Such a precursory phenomenon has been observed also in the isostructural FeCl4 salt with the anomalous metallic states, which shows a negative σ2 in contrast to the GaCl4 salt. Just the opposite of ground states in between the GaCl4 and FeCl4 salts may result in the contrasting anomalous metallic states with different precursory phenomena with opposite signs of σ2.  相似文献   

6.
The 63Cu NMR Knight shift K and spin-lattice relaxation rate 1/T1 have been measured to study the thiospinel superconductor Cu1.5Rh1.5S4 from a microscopic viewpoint. K is negative and has a weak dependence on temperature, and the hyperfine coupling constant Hhfd is estimated to be −52.4 kOe/μB. 1/T1 is proportional to the temperature in the normal state. In the superconducting state, 1/T1 takes a coherence peak just below Tc, and decreases exponentially well below Tc, from whose temperature dependence the superconducting energy gap has been proved to be close to 2Δ = 3.52kBTc given by the BCS theory.  相似文献   

7.
郭莉萍  杨万民  郭玉霞  陈丽平  李强 《物理学报》2015,64(7):77401-077401
本文通过在新固相源中添加Ni2O3的方法, 采用顶部籽晶熔渗生长工艺(TSIG)制备出组分为(1-x) (Gd2O3+1.2BaCuO2)+x Ni2O3、直径为20 mm的单畴GdBCO 超导块材(其中x = 0, 0.02, 0.06, 0.10, 0.14, 0.18, 0.30, 0.50 wt%), 并研究了Ni2O3的掺杂量x对样品的表面生长形貌、微观结构、临界温度Tc、磁悬浮力以及俘获磁通密度的影响. 研究结果表明, 当Ni2O3的掺杂量x在0–0.50 wt%的范围内时, 均可制备出单畴性良好的样品, 且Ni2O3的掺杂对样品中Gd211粒子的分布和粒径没有明显的影响. 在Ni2O3的掺杂量x从0增加到0.50 wt%的过程中, 样品的临界温度Tc呈现下降的趋势, 从x=0时的92.5 K下降到x=0.50 wt%时的86.5 K, 这是由于Ni3 +替代GdBCO晶体中Cu2 +所致; 样品磁悬浮力和俘获磁通密度均呈现先增大后减小的变化规律, x=0.14 wt%时, 磁悬浮力达到最大值34.2 N, x=0.10 wt%时, 俘获磁通密度达到最大值0.354 T. 样品磁悬浮力和俘获磁通密度的变化规律与Ni2O3的掺杂量x有密切关系, 只有当掺杂量x合适时, Ni3+对Cu2 +的替代既不会造成Tc的明显下降, 但又能产生适量的Ni3 +/Cu2+ 晶格畸变, 从而达到提高样品磁通钉扎能力和超导性能的效果.  相似文献   

8.
We have measured the specific heat capacity of MgCNi3 and (Mg0.85Zn0.15)CNi3 in the temperature range of 0.5 K < T < 10 K with magnetic fields up to 9 T. After the Zn impurity incorporation, Tc of (Mg0.85Zn0.15)CNi3 decreases but the temperature dependence of specific heat remains BCS-like. We show that the data for the two samples are identical when scaled with Tc. This result excludes possible unconventional features theoretically proposed, such as impurity-induced low-energy bound state. Our data suggest that MgCNi3 is a conventional BCS superconductor.  相似文献   

9.
Temperature and angular dependences of 205Tl line width, Δ , and transverse relaxation time, τ, have been measured in two crystals of Tl2Ba2CuOx with Tc = 32 and 115 K, respectively. In the normal state both Δ and τ have been found to be temperature-independent and not to vary with varying Tc, implying that the size of inhomogeneous broadening is also invariable. Analysis of the line width angular dependence shows that the inhomogeneous broadening originates, most probably, from local distortions associated with Cu substitution for Tl. A conclusion is that variations in Tc are not related to this substitution.  相似文献   

10.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

11.
The thermoelectric power (TEP) S versus temperature has been systematically investigated for several series of the superconducting cuprates Tl(Ba,Sr)2Cam−1CumO2m+3−δ (m = 2, 3) and Tl2Ba2Cam−1CumO2m+4+δ (m = 1, 2, 3). The consideration of the S(Tc) curves allows two important points to be found evidence for. The first one deals with the fact that all these superconducting thallium cuprates are systematically overdoped whatever Tc, and whatever the number of Cu or Tl layers; no underdoped superconducting cuprate could be obtained. The second point shows that there exist two classes of Tl cuprates: the weakly overdoped cuprates that exhibit a Tc max ≥ 100 K (all the triple copper layer cuprates and the 2212 cuprates) and those which can be heavily doped that exhibit a Tc max ≤ 90 K (the 2201 and the 1212 cuprates). The different behavior of thallium cuprates compared to YBa2Cu3O7−δ and to bismuth cuprates is discussed.  相似文献   

12.
139La-NQR measurements have been carried out in the ternary carbide superconductor LaNiC2. The nuclear quadrupole frequency and the asymmetry parameter of 139La in LaNiC2 were estimated to be about 1.9 MHz and 0, respectively. In the normal state, the nuclear spin relaxation rate (1/T1) in the 139La NQR signal was proportional to temperature (T) in zero external field above the superconducting transition temperature (Tc) or in an external field larger than the superconducting critical field, which means the system is in the Fermi-liquid state. In the superconducting state, on the other hand, 1/T1 decreases no more linearly with T, but decreases rapidly exponentially as exp (−Δ/kBT) at low T with an appreciable enhancement just below Tc. The value of the superconducting energy gap, 2Δ, was estimated to be 3.34kBTc, compared with 3.52kBTc of the BCS-value. This result strongly suggests that the superconductivity in LaNiC2 is of a conventional BCS type.  相似文献   

13.
We have studied the stationary Josephson effect on YBa2Cu3O7−δ (Tc=90 K) and Bi2Sr2Ca1Cu2 O8 (Tc=80 K and 87 K for two samples of different origin) ceramic based junctions. The temperature dependence of the critical current near Tc has been found as Ic≈(Tc-T) for the Y-Ba-Cu-O samples indicating that they should be classified as S-N-I-N-S type junctions. The I-V curves of the Bi-Sr-Ca-Cu samples show the typical behaviour of S-I-S structures. Using Ambegaokar-Baratoff's theory for Bi2Sr2Ca1Cu2O8, the temperature dependence of the superconducting state gap Δ(T) was calculated and it was evaluated that 1.452Δ(0)/kBTc3.5.  相似文献   

14.
The dependence of Tc on oxygen content was determined for (Nd0.67Ce0.33)2(Ba0.67Nd0.33)2Cu3.01Oy. It was found that superconduction appears in a range of y=9.10−9.16 and that Tc is enhanced remarkably by the increase of oxygen content. In an oxygen content range where superconduction appeared, the Ce valence was nearly +4 and the Cu valence changed from 2.31 to 2.33. The conductivity was measured in a wide temperature range between Tc and 1200 K as a function of oxygen partial pressure. The high-temperature conductivity increased with increasing oxygen content. It was found that both carrier concentration and mobility are increased with oxygen content. The conduction at low temperatures was semiconductor-like, and increased with increasing oxygen content, where the energy gap EA-EV between acceptor level and top of filled band approached zero.  相似文献   

15.
We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.  相似文献   

16.
The annealing characteristics and the superconducting properties of Tl2Ca2Ba2Cu3O10 thin films sputter-deposited onto yttrium- stabilized ZrO2 substrate at up to 500°C from two stoichiometric oxide targets are reported. The films deposited at 400–500°C were found to require a lower post-annealing temperature than the films deposited at lower temperatures to attain the highest Tc superconducting state, due to a more pronounced Ba diffusion toward the substrate as indicated by their secondary ion mass spectrometry depth profiles. The highest Tc achieved tends to degrade with increasing substrate temperatures, a zero resistance Tc of 121 and ≈90 K, respectively, being observed for the films deposited at -ambient temperature and at 500°C. The formation of the highest Tc phase (Tl2Ca2Ba2Cu3O10) generally is associated with a sheet type of crystal growth morphology with smooth and aligned surfaces which can be obtained only from the films capable of sustaining prolonged annealing at 900°C. Annealing at lower temperatures (≈860°C) results in the formation of rod or sphere type of morphologies with rough and randomly oriented crystals and the lower Tc phases such as Tl2Ca1Ba2Cu2O8.  相似文献   

17.
We studied the coercivity in magnets of composition R17Fe83−χBχ (R = Nd, Pr and χ = 8, 30), using measurements of the coercive field Hc, its angular dependence, and the magnetic viscosity coefficient Sv, for temperatures between 4.2 and 500 K. The results are discussed in relation to a model which does not specifically consider the detailed mechanisms involved in magnetization reversal, but which provides information about the magnetic properties in the activation volume v where magnetization reversal is initiated. It is concluded that the ordering temperature in v tends to be slightly smaller than in the bulk and that the room temperature anisotropy in v is not strongly reduced with respect to the bulk value. Finally, a direct evaluation of the dipolar interactions is in good agreement with results obtained from Hc(T).  相似文献   

18.
On melt processed samples of the 86 K superconductor Bi2Sr2CaCu2O8 we have performed resistive measurements in the low field limit B0.13 T and 40 KT77 K. The voltage drop is found to rise exponentially with current E ∝exp j/j0, which is interpreted in terms of thermal activation of pinned flux lines. An activation energy U0(T)90 meV is derived from the transition width j0(T) and is related to a plausible core pinning interaction of flux lines with normal conducting precipitates. This reproduces the measured jc(B, T) values in the whole regime investigated. We conclude that pinning centers must have a minimum size in order to control flux creep. Finally we demonstrate that conventional summation of the single site pinning forces cannot account for the observed macroscopic depinning current density.  相似文献   

19.
The pressure effect on Tc of polycrystalline and single crystalline YBa2Cu3Ox investigated as a function of oxygen content x by ac-susceptibility measurements under helium pressure. In the overdoped region x> 6.93 the single crystals show a negative dTc/d p, as expected from the charge transfer model. For optimally doped samples with x = 6.93 we find dTc/d P = 0.4 K/GPa which points to pressure effects on Tc aside from charge transfer. In the underdoped region x < 6.93 the dTc/d p values obtained from the experiment depend strongly on the storage temperature of the sample during the experiment. When the samples are stored at temperatures well below 240 K throughout the entire experiment including pressure application and pressure release, dTc/d p increases to approx. 7 K/GPa at x = 6.7 but with a further decrease of the oxygen content the dTc/d p drops to approx. 2 K/GPa at x = 6.4. These effects are intrinsic to the YBa2Cu3Ox structure and can be explained by considering the anisotropic structure of YBa2Cu3Ox. The decrease of the c-axis lattice parameter results in a charge transfer to the CuO2-planes mainly [1], whereas the compression of the a- and b-axis lattice parameter is known to produce different pressure effects which are responsible for the peak in dTc/d p at x = 6.7 [2]. When pressure is changed at room temperature oxygen ordering effects occur which cause a relaxation of Tc to the equilibrium value Tc(p) at this pressure with a time constant depending on the oxygen content x. A decrease x results in a peak effect in dTc/d p at x = 6.7 again, which is enhanced to approx. 12 K/GPa. If the oxygen content is decreased further, dTc/d p first drops to 5 K/GPa at x = 6.6, but the increases to values of more than 20 K/GPa for x < 6.42. These giant pressure effects at low oxygen contents are mainly caused by a reversible Tc increase (dTc/d p)O due to pressure induced oxygen ordering via oxygen motion between unit cells.  相似文献   

20.
Baruch Horovitz 《Physica A》1993,200(1-4):296-304
Data on multilayered superconductors such as YBa2Cu3O7PrBa2Cu3O7 show a strong dependence of Tc on anisotropy. In particular, the ratio Tcτ, where τ is the effective XY coupling constant, is found to vary by much more than the theoretical XY limit of 2.4. Layered superconductors allow for an additional anisotropy due to the core energy Ec of vortices perpendicular to the layers. It is shown that if Ec is large, such that the anisotropy is larger than exp(-EcTc), Tc is near a fluxon transition which is described by fluctuations of flux loops parallel to the layers. In the latter case Tcτ can vary by more than 2.4, accounting for the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号