首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of dilute mixtures of dioleoylphosphatidylethanolamine (DOPE) and reduced TritonX100 (TX100(r)) has been investigated at pH 7.4 and 10. Using simple turbidity measurements and optical observations, together with cryo-transmission electron microscopy (cryo-TEM), we estimate the phase boundaries. We show that at both pH 7.4 and 10, a very large amount of surfactant is needed for the onset of micelle formation (X(TX100(r)) approximately 0.60-0.70) as well as for a complete solubilization of DOPE into mixed micelles (X(TX100(r)) > 0.94). We find that the micelles that are formed at high TX100(r) concentrations are of spherical shape. Increasing the pH from 7.4 to 10 has a comparably small effect on the transition from a lamellar (Lalpha) to a micellar (L1) phase. However, the reversed hexagonal phase (H(II)) that is present at low surfactant content at pH 7.4 is absent at pH 10. This is due to the partial negative charge of DOPE at pH 10. We determine the fraction of charged DOPE (alpha = 0.34) at pH 10 in a 150 mM NaCl buffer using zeta-potential (zeta-potential) measurements in combination with a Poisson-Boltzmann (PB) model. The intrinsic pK(a) of the primary amino group of DOPE, in a pure DOPE membrane, is estimated to 9.15 +/- 0.2.  相似文献   

2.
The mechanism of anesthetic action on membranes is still an open question, regardless of their extensive use in medical practice. It has been proposed that anesthetics may have the effect of promoting pore formation across membranes or at least switching transmembrane channels. In both cases this may be the result of changes in the interfacial curvature of the membrane due to the presence of anesthetic molecules. Aqueous solutions of surfactants display phases that mimic, in a simplified manner, real biological membranes. Therefore, in this study, two nonionic surfactant systems C16E6/H2O in concentrated solution and C10E3/H2O in dilute solution have been used as model membranes for the investigation of the effects of six common anesthetics (halothane, sodium thiopental, lidocaine base form and hydrochloride, prilocaine hydrochloride, and ketamine hydrochloride). Both binary surfactant-water systems exhibit phase transitions from the lamellar phase, Lalpha, that has zero spontaneous curvature and zero monolayer curvature to phases with more local interfacial curvature. These are the random mesh phase, Mh1(0), which consists of lamellae pierced by water-filled pores with local areas of positive interfacial curvature and the sponge phase, L3, that consists of the lamellar phase with interlamellae attachments, often referred to as a "melted" cubic phase, possessing negative monolayer curvature. Small-angle X-ray scattering and 2H NMR experiments upon the C16E6/2H2O system and optical observations of the C10E3/H2O system showed that all anesthetics employed in this study cause a shift in the Mh1(0) to Lalpha phase transition temperature and in the Lalpha to L3 transition temperature, respectively. All of the anesthetics studied bind to the interfacial region of the surfactant systems. Two types of behavior were observed on anesthetic addition: type I anesthetics, which decreased interfacial curvature, and type II, which increased it. However, at physiological pH both types of anesthetics decreased interfacial curvature.  相似文献   

3.
The bilayer phase transitions of dialkyldimethylammonium bromides (2C(n)Br; n = 12, 14, 16) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. Under atmospheric pressure, the 2C(12)Br bilayer membrane underwent the stable transition from the lamellar crystal (L(c)) phase to the liquid crystalline (L(α)) phase. The 2C(14)Br bilayer underwent the main transition from the metastable lamellar gel (L(β)) phase to the metastable L(α) phase in addition to the stable L(c)/L(α) transition. For the 2C(16)Br bilayer, moreover, three kinds of phase transitions were observed: the metastable main transition, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable L(α) phase, and the stable lamellar crystal (L(c(1)))/L(α) transition. The temperatures of all the phase transitions elevated almost linearly with increasing pressure. The temperature (T)-pressure (p) phase diagrams of the 2C(12)Br and 2C(14)Br bilayers were simple, but that of the 2C(16)Br bilayer was complex; that is, the T-p curves for the metastable main transition and the L(c(2))/L(α) transition intersect at ca. 25 MPa, which means the inversion of the relative phase stability between the metastable phases of L(β) and L(c(2)) above and below the pressure. Moreover, the T-p curve of the L(c(2))/L(α) transition was separated into two curves under high pressure, and as a result, the pressure-induced L(c(2P)) phase appeared in between. Thermodynamic quantities for phase transitions of the 2C(n)Br bilayers increased with an increase in alkyl-chain length. The chain-length dependence of the phase-transition temperature for all kinds of transitions observed suggests that the stable L(c(1))/L(α) transition incorporates the metastable L(c(2))/L(α) transition in the bilayers of 2C(n)Br with shorter alkyl chains, and the main-transition of the 2C(12)Br bilayer would occur at a temperature below 0 °C.  相似文献   

4.
Droplet sizes of oil/water (O/W) nanoemulsions prepared by the phase inversion temperature (PIT) method, in the water/C16E6/mineral oil system, have been compared with those given by a theoretical droplet model, which predicts a minimum droplet size. The results show that, when the phase inversion was started from either a single-phase microemulsion (D) or a two-phase W+D equilibrium, the resulting droplet sizes were close to those predicted by the model, whereas, when emulsification was started from W+D+O or from W+D+Lalpha (Lalpha = lamellar liquid crystal) equilibria, the difference between the measured and predicted values was much higher. The structural changes produced during the phase inversion process have been investigated by the 1H-PFGSE-NMR technique, monitoring the self-diffusion coefficients for each component as a function of temperature. The results have confirmed the transition from a bicontinuous D microemulsion at the hydrophile-lipophile balance (HLB) temperature to oil nanodroplet dispersion in water when it is cooled to lower temperatures.  相似文献   

5.
Over a range of hydration, unsaturated diacylglycerol/phosphatidylcholine mixtures adopt an inverse micellar cubic phase, of crystallographic space group Fd3m. In this study hydrated DOPC:DOG mixtures with a molar ratio close to 1 : 2 were examined as a function of hydrostatic pressure, using synchrotron X-ray diffraction. The small-angle diffraction pattern at atmospheric pressure was used to calculate 2-D sections through the electron density map. Pressure initially has very little effect on the structure of the Fd3m cubic phase, in contrast to its effect on hydrated inverse bicontinuous cubic phases. At close to 2 kbar, a sharp transition occurs from the Fd3m phase to a pair of coexisting phases, an inverse hexagonal H(II) phase plus an (ordered) lamellar phase. Upon increasing the pressure to 3 kbar, a further sharp transition occurs from the H(II) phase to a (fluid) lamellar phase, in coexistence with the ordered lamellar phase. These transitions are fully reversible, but show hysteresis. Remarkably, the lattice parameter of the Fd3m phase is practically independent of pressure. These results show that these two lipids are miscible at low pressure, adopting a single lyotropic phase (Fd3m); they then become immiscible above a critical pressure, phase separating into DOPC-rich and DOG-rich phases.  相似文献   

6.
Monoacylglycerol based lipids are highly important model membrane components and attractive candidates for drug encapsulation and as delivery agents. However, optimizing the properties of these lipids for applications requires a detailed understanding of the thermodynamic factors governing the self-assembled structures that they form. Here, we report on the effects of hydrostatic pressure, temperature, and water composition on the structural behavior and stability of inverse lyotropic liquid crystalline phases adopted by monolinolein (an unsaturated monoacylglycerol having cis-double bonds at carbon positions 9 and 12) under limited hydration conditions. Six pressure-temperature phase diagrams have been determined using small-angle X-ray diffraction at water contents between 15 wt % and 27 wt % water, in the range 10-40 °C and 1-3000 bar. The gyroid bicontinuous cubic (Q(II)(G)) phase is formed at low pressure and high temperatures, transforming to a fluid lamellar (L(α)) phase at high pressures and low temperature via a region of Q(II)(G)/L(α) coexistence. Pressure stabilizes the lamellar phase over the Q(II)(G) phase; at fixed pressure, increasing the water content causes the coexistence region to move to lower temperature. These trends are consistent throughout the hydration range studied. Moreover, at fixed temperature, increasing the water composition increases the pressure at which the Q(II)(G) to L(α) transition takes place. We discuss the qualitative effect of pressure, temperature, and water content on the stability of the Q(II)(G) phase.  相似文献   

7.
《Liquid crystals》1999,26(12):1845-1848
From calorimetric measurements, the phase transition enthalpies and entropies in mixed systems of each of two cholesteryl esters with a nematogenic compound PCPB have been determined as a function of composition. The calorimetric data for the LC-I transition, as well as the slope (dp/dT)t of the phase boundary line LC-I, show a conspicuous discontinuity at the critical mole fraction of PCPB where the blue phases disappear. The enthalpy of the SmA-N* transition becomes zero at the same critical mole fraction. Possible reasons for the observed transition interdependence are discussed.  相似文献   

8.
The decomposition of urea adducts with hydrocarbons is treated as a first-order phase transition and the pressure dependence is studied up to 0.7 GPa for several kinds of adducts. The thermodynamic quantities at the decomposition of the adduct can be analysed as a sum of those quantities of the component materials. The transition from the orthorhombic to the hexagonal form of the adduct with polyethylene is also investigated by X-ray diffraction and the pressure dependence of the lattice parameters is measured for the adducts. The results are compared with the phase transition in the pure paraffin.  相似文献   

9.
High-sensitivity differential scanning calorimetry was utilized to examine whether lipids capable of forming an inverted nonlamellar hexagonal II (HII) phase can be deposited into nanoporous substrate-supported arrays. Particularly, we compare the thermotropic phase properties of nanoconfined unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine lipid bilayers with unsupported dispersions to assess nanoconfinement effects, focusing on the lamellar fluid (Lalpha) to HII phase transition. Experimental results provide direct and clear evidence for the formation of an HII phase upon both heating and cooling. However, a small shift in the Lalpha/HII phase transition temperature, as well as an increase in the magnitude of the associated temperature hysteresis, was observed in the nanoporous substrate-supported system. Additionally, nanoconfinement effects on the interaction and location of the antimicrobial peptide gramicidin S (GS) with nanoporous substrate-supported cardiolipin bilayers were examined by Fourier transform infrared spectroscopy as a function of temperature and phospholipid phase state. Upon heating, GS molecules began to insert into nanoconfined, substrate-supported cardiolipin bilayers at lower temperatures relative to the gel/liquid-crystalline phase transition temperature than into unsupported bilayers. The reduction in the polarity and hydrogen-bonding potential environment of GS in the Lalpha state suggests that GS is located at the polar/apolar interfacial region in both supported and unsupported cardiolipin bilayers and that the capacity of GS to interact with nanoporous substrate-supported cardiolipin bilayers was not significantly hindered by nanoconfinement. These studies further demonstrate the usefulness of supported lipid bilayers inside nanoporous substrates.  相似文献   

10.
From calorimetric measurements, the phase transition enthalpies and entropies in mixed systems of each of two cholesteryl esters with a nematogenic compound PCPB have been determined as a function of composition. The calorimetric data for the LC-I transition, as well as the slope (dp/dT)t of the phase boundary line LC-I, show a conspicuous discontinuity at the critical mole fraction of PCPB where the blue phases disappear. The enthalpy of the SmA-N* transition becomes zero at the same critical mole fraction. Possible reasons for the observed transition interdependence are discussed.  相似文献   

11.
The phase sequence of the N-dodecyl-N-octyl-N-methylamine oxide (C12C8MAO)/HCl/water system with increasing apparent degree of protonation, X, defined as [HCl]/[C12C8MAO], has been studied. For a 100 mM concentration of C12C8MAO the following sequence of phases has been observed: L1/L2, L1/Lalpha/L2, L1/Lalpha, Lalpha, Lalpha/L2. The single-phase Lalpha region begins at X = 0.007 and ends at X = 0.35. The upper phase boundary, X*, depends strongly on the acid that is used for the protonation of the surfactant. It is shifted for increasing hydrophilicity of the acid to higher X values. For formic acid X* = 0.95, and for HBr X* = 0.05. A weakly protonated 1% solution of the surfactant is an iridescent Lalpha phase. Both unilamellar vesicles and multilamellar vesicles are observed in cryo transmission electron microscopy and freeze fracture transmission electron microscopy images in the Lalpha phase. The phase sequence with protonation differs from that of single-chain amine oxide surfactants. The synergism between the protonated and the nonprotonated species is very weak in the range X < X*, while the transition from the Lalpha phase to the Lalpha/L2 two-phase region is considered to be due to synergism. Little or no synergism is observed regarding the surface tension, but synergism does appear in the interfacial tension between decane and the aqueous solution. The viscoelastic properties of the vesicle/Lalpha phase resemble those of densely packed hard spheres. The effects of electric charge on the elastic property of the vesicles could be understood in terms of the osmotic pressure of the solutions. The interlamellar spacing evaluated by small-angle X-ray scattering showed a minimum around X approximately 0.1, which is interpreted as a result of two opposing contributions. One contribution is the suppression of undulation of bilayer membranes by introduction of electric charges, and the other comes from the increasing total bilayer thickness due to the increasing hydrogen bond formation with increasing X.  相似文献   

12.
《Liquid crystals》1999,26(7):1067-1078
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

13.
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

14.
Metal cations (Mn(2+) or Ca(2+)) in aqueous dispersions of mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-functionalized DOPE (DOPE-PEG(350)) induce, above a certain amount of the PEG lipid component, a phase transition from the inverted hexagonal phase H(II) to the bicontinuous inverted cubic phase Q(224) with space group Pn3m. The process is driven by the decrease of free elastic energy due to the Gaussian curvature of the cubic phase. The structural characterization of the phase behavior over the whole explored range of DOPE-PEG/DOPE weight ratio (3-25%) is reported, focusing on the role of the metal cation in the formation of the 3D cubic lattice. This result may represent a significant progress toward a design-based approach to drug delivery.  相似文献   

15.
Bilayer phase transitions of dioctadecyldimethylammonium bromide (2C(18)Br) and chloride (2C(18)Cl) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. The 2C(18)Br bilayer membrane showed different kinds of transitions depending on preparation methods of samples under atmospheric pressure. Under certain conditions, the 2C(18)Br bilayer underwent three kinds of transitions, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable lamellar gel (L(β)) phase at 35.4 °C, the metastable main transition from the metastable L(β) phase to the metastable liquid crystalline (L(α)) phase at 44.5 °C, and the stable transition from the stable lamellar crystal (L(c(1))) phase to the stable L(α) phase at 52.8 °C. On the contrary, the 2C(18)Cl bilayer underwent two kinds of transitions, the stable transition from the stable L(c) phase to the stable L(β) phase at 19.7 °C and the stable main transition from the stable L(β) phase to the stable L(α) phase at 39.9 °C. The temperatures of the phase transitions of the 2C(18)Br and 2C(18)Cl bilayers were almost linearly elevated by applying pressure. It was found from the temperature (T)-pressure (p) phase diagram of the 2C(18)Br bilayer that the T-p curves for the main transition and the L(c(1))/L(α) transition intersect at ca. 130 MPa because of the larger slope of the former transition curve. On the other hand, the T-p phase diagram of the 2C(18)Cl bilayer took a simple shape. The thermodynamic properties for the main transition of the 2C(18)Br and 2C(18)Cl bilayers were comparable to each other, whereas those for the L(c(1))/L(α) transition of the 2C(18)Br bilayer showed considerably high values, signifying that the L(c(1)) phase of the 2C(18)Br bilayer is extremely stable. These differences observed in both bilayers are attributable to the difference in interaction between a surfactant and its counterion.  相似文献   

16.
The effects caused by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO; Pluronic) copolymers on the structure and stability of dioleoylphosphatidylethanolamine (DOPE) liposomes were studied by means of turbidity, leakage, and cryo-transmission electron microscopy investigations. The results show that by inclusion of Pluronics in the DOPE dispersion it is possible to stabilize the lamellar Lalpha phase and to produce liposomes that are stable and nonleaky at low pH (pH 5). The stabilizing capacity was observed to depend critically on the molecular composition of the Pluronics. Block copolymers with comparably long PPO and PEO segment lengths, such as F127 and F108, most effectively protected DOPE liposomes prepared at high pH from aggregation and subsequent structural rearrangements induced by acidification. A sufficiently long PPO block was found to be the most decisive parameter in order to obtain adequate coverage of the liposome surface at low Pluronic concentrations. Upon increasing the copolymer concentration, however, Pluronics with comparably short PPO and PEO segment lengths, such as F87 and P85, could also be used to stabilize the DOPE liposomes. Essentially the same trends were observed when the Pluronics were added to preformed DOPE liposomes instead of being included in the preparation mixture. In this case the least effective copolymers failed, however, to completely prevent the DOPE liposomes from releasing encapsulated hydrophilic markers.  相似文献   

17.
The self-assembly behavior of a commercial mixture of polyglycerol fatty acid esters (PGE) and water is investigated as a function of temperature and surfactant content. The phase diagram of this pseudo-binary mixture was characterized using a combination of cross-polarized light and freeze-fracture electron microscopy (cryo-SEM), X-ray diffraction (XRD), small-angle neutron scattering (SANS), and differential scanning calorimetry (DSC). Our experiments show that the morphology of the supramolecular aggregates is lamellar and present in the form of a continuous or dispersed phase (multilamellar vesicles) depending on the water content of the system. Under the effect of temperature, the short- and long-range order of the bimolecular layers successively changes from a biphasic surfactant dispersion to a lamellar liquid-crystalline (Lalpha) and a stable lamellar gel phase (Lbeta) upon cooling; this transition is found to be irreversible. Formation of the lamellar aggregates can be related to the average molecular structure and shape factor of PGE. The stability of the resulting gel phase (Lbeta) appears to be due to the presence of small amounts of unreacted ionic co-surfactant, namely, fatty acid soaps, in this per se nonionic commercial mixture.  相似文献   

18.
We have examined the structure of the lamellar phase (Lalpha) that coexists with a micellar solution (L1) for a commercial sodium alkyl benzene sulfonate (LAS) mixed with water. The surfactant is a mixture containing C10-C13 alkyl chains, having all positional isomers of the benzene sulfonate group present except the 1-isomer. Unusually for ionic surfactants, the difference in compositions between the coexisting L1 and Lalpha phases is large (L1 = approximately 20 wt % LAS; Lalpha = approximately 65 wt %). The main technique employed was X-ray diffraction, supplemented by optical microscopy and differential scanning calorimetry (DSC). At ambient temperatures, the lamellar phase gives a single diffraction pattern with the main reflection (d) at approximately 32.5 A, whatever the composition. However, above 40 degrees C, the diffraction peak becomes broader and moves to higher d values. At higher temperatures still, several distinct and different diffraction peaks are observed, differing in detail according to composition. The largest d values (approximately 42-4 A) are observed for the lowest LAS concentrations, while the largest number of separate reflections (five) occurs for samples with approximately 44-50% LAS, both at the highest temperatures. Although there are some differences in the data between heating and cooling cycles, the d values return to the original value at low temperature. There are no observable transitions in DSC, nor is there any heterogeneity in the lamellar phase observable by microscopy. The data clearly indicate that there is some lateral separation of the different LAS isomers within the bilayers, which results in the formation of local lamellar regions having different surfactant compositions. This lateral phase separation may arise from the presence of an (electrostatic) attractive interaction, which gives rise to an upper consolute loop within the lamellar phase region of a pure LAS isomer. Similar mechanisms may occur in biological membranes and could be responsible for the occurrence of membrane lipid patches.  相似文献   

19.
The lyotropic phase behavior for the neat cationic gemini surfactants alkanediyl-alpha,omega-bis(alkyldimethylammonium bromide), designated here as m-s-m, has been investigated previously in several works, but the thermotropic behavior has not been well characterized. Only for 15-s-15 and 14-s-12 have thermotropic liquid crystals (Lc) been reported. In this work, for the first time and in contrast to previous reports, we observe thermotropic Lc formation for m-2-m geminis with m = 12, 14, 16, and 18, by means of polarizing microscopy and differential scanning calorimetry (DSC). Furthermore, we investigate mixtures of m-2-m and SDS, m-2-m Br2.2SDS, which exhibit crystal-to-crystal phase transitions at lower temperature and, at high temperature, smectic Lc phases. The transition temperatures and enthalpies for Lc phases, obtained by DSC, present clear trends upon increase of the chain lengths. Combining Langmuir film experiments, possible lamellar arrangements for the different phases are tentatively discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号