首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal atoms and clusters exhibit chemical properties that are significantly different or totally absent in comparison to their bulk counterparts. Such peculiarity makes them potential building units for the generation of novel catalysts. Investigations of the gas‐phase reactions between size‐ and charge‐selected atoms/clusters and small molecules have provided fundamental insights into their intrinsic reactivity, thus leading to a guiding principle for the rational design of the single‐atom and cluster‐based catalysts. Especially, recent gas‐phase studies have elucidated that small molecules such as O2, CO2, and CH3I can be catalytically activated by negatively‐charged atoms/clusters via donation of a partial electronic charge. This Minireview showcases typical examples of such “reductive activation” processes promoted by anions of metal atoms and clusters. Here, we focus on anionic atoms/clusters of coinage metals (Cu, Ag, and Au) owing to the simplicity of their electronic structures. The determination of a correlation between their activation modes and the electronic structures might be helpful for the future development of innovative coinage metal catalysts.  相似文献   

2.
The ground-state FeO molecules are generated from photolysis of Fe(CO)5 in a Fe(CO)5/M(O2 or N2O)/Rg(He or Ar) mixture using an unfocused weak UV laser beam. The formation of ground-state FeO molecules is identified by a laser-induced fluorescence (LIF) method. The LIF signal from FeO molecules is stronger in O2 than in N2O at the same partial pressures. The radiative lifetimes for seven bands in the FeO orange system are measured. They are substantially different depending on the excited band ranging from 260±30 ns to 590±50 ns.  相似文献   

3.
The potential energy surfaces of elementary reactions of dissociative addition of one and two H2 molecules to Cr-, Mo-, or W-doped aluminide clusters MAl12 in the states of different multiplicity have been calculated by the density functional theory method. The results are compared with the previous calculations of analogous reactions involving the singlet and triplet TiAl12 cluster. The effect of the dopant nature and electronic state multiplicity on the energies and activation barriers of hydrogenation reactions is considered.  相似文献   

4.
The results of theoretical, experimental investigations on activation of small molecules on their coordination to cluster complexes of heavy transition metals with weak- and strong-field ligands are presented. Homogeneous catalytic redox reactions of the CO, N2, H2O molecules and the N3 - molecular anion in the presence of cluster complexes of low-valent molybdenum and rhenium are studies. The reaction mechanism is established. Three modifications of the homogeneous cluster catalysis of redox reactions of small molecules are described.  相似文献   

5.
In both physics and chemistry, increased attention is being paid to metal clusters. One reason for this attitude is furnished by the surprising results that have been obtained from studies of the preparation, structural characterization and physical and chemical properties of the clusters. Whereas investigations of cluster reactivity are at present generally limited to three- or four-membered clusters, successful syntheses of clusters with many more metal atoms have recently been designed. These substances occupy an intermediate position between solid state chemistry and the chemistry of metal complexes. This review presents a versatile method for synthesizing metal clusters: the reaction of complexes of transition metal halides with silylated compounds such as E(SiMe3)2 (E = S, Se, Te) and E′R(SiMe3)2 (R = Ph, Me, Et; E′ = P, As, Sb). Although some of the compounds thus formed have already been prepared by other routes, the method affords ready access to both small and large transition metal clusters with unusual structures and valence electron concentrations; a variety of reactions in the ligand sphere are also possible.  相似文献   

6.
Summary.   Silicon oxide or metal oxide clusters or small particles with polymerizable organic groups covalently bonded to their surface can be copolymerized with organic monomers by various polymerization techniques. Whereas the preparation and properties of the polymers reinforced by R 8Si8O12 have already been well investigated, analogous materials with incorporated transition metal oxide clusters are only beginning to show their potential as an interesting new class of inorganic-organic hybrid polymers. In the second part of the article, approaches are reviewed in which the inorganic building block serves as an initiator for polymerization reactions. This results in materials in which the organic polymer is grafted from an inorganic core. Most work has been done with surface-modified silica particles. Free radical polymerizations and atom transfer radical polymerizations with macroinitiators are summarized. The latter method results in polymeric particles in which an inorganic core is surrounded by an organic polymer shell. A new approach is the use of polyfunctional inorganic molecules or molecular clusters as initiators. Received July 28, 2000. Accepted August 7, 2000  相似文献   

7.
Adsorption of acetylene molecules by water clusters at T 230 K was studied by the method of molecular dynamics. Addition of already two C2H2 molecules to (H2O) n clusters (10 ≤ n ≤ 20) makes them thermodynamically unstable. With an increase in the acetylene concentration in the disperse aqueous system, the IR absorption by the cluster system in the frequency range 0 ≤ ω ≤ 1000 cm?1 increases. Depending on the number of C2H2 molecules per water cluster, the IR reflection by cluster systems can either increase or decrease. The power of the thermal radiation emitted by the clusters considerably increases after the adsorption of C2H2 molecules and grows with an increase in the acetylene concentration in the disperse aqueous system.  相似文献   

8.
《Chemical physics letters》1999,291(1-2):49-54
The dehydrogenation of NH3 by Ti, Zr, and Nb cations, produced in a laser-induced plasma reactor, is found to form both neutral and cationic clusters. Depending on the conditions, either the production of neutral metal nitride clusters is favored or, the formation of cationic `precursor' metal nitride clusters containing additional intact NH3 is observed. The neutral clusters are formed when full dehydrogenation of the NH3 is achieved, while the cationic precursor species are formed under conditions where a large fraction of the NH3 remains intact. Metastable dissociation studies show that intact NH3 molecules are bound to the developing transition metal nitride clusters.  相似文献   

9.
A comparative study of adsorption of H atoms and H2 molecules on Pd3Cu, Cu4, and Pd4 clusters has been performed through density functional calculations, using the hybrid B3LYP exchange‐correlation functional as implemented in the Gaussian98 program. For Pd atoms the relativistic small‐core effective core potential LANL and LANL2DZ basis set was used and for hydrogen a 6‐31G** basis set was used. The main emphasis is set in the reaction behavior of the different clusters with hydrogen atoms and molecules. We find that full geometry optimization does not appreciably change the metal cluster geometry either for certain reaction modes or the H and H2 capture parameters, but increases the number of reactive sites of the metal clusters. Also, we found that there is charge transfer competition between H and Cu atoms, which drastically diminishes H2 adsorption energy, related to the Pd cluster observed value. Edges and threefold sites are the principal hydrogen adsorption sites. Hydrogen has a great mobility over the metal clusters for different minima, especially when Cu is present; many initial pathways end in the same adsorption site. The observed hydrogen adsorption and binding energies are well reproduced by the calculations. Also, the adsorption mechanisms were determined. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

10.
Complexes of nickel atoms and small clusters with acetylene molecules are studied within the density functional theory. A trend toward the predominant formation of structures with bridge hydrogen atoms is observed in reactions between Ni n and acetylene with rising n.  相似文献   

11.
The behavior of N2 and Cl2 molecules in H2O clusters was studied by the molecular dynamics method. Structural, thermodynamic, kinetic, and electrical properties of water aggregates containing N2 and Cl2 molecules were examined. The energy of the admixture-water interaction is negative and decreases as the cluster size increases. The electrostatic potential and the field strength undergo strong changes in the vicinity of aggregate border. The effect of hydration on the rate of some atmospheric reactions was considered.  相似文献   

12.
We have measured absolute integral cross sections for low-energy collisions of atoms and molecules with neutral sodium clusters over a wide cluster size range (n=2–40). The cross sections are exceptionally large, reaching values of thousands of square angstroms. Consequently, the scattering involves long-range interactions. The van der Waals force, acting either alone (Nan+N2) or in concert with the inelastic charge-transfer “harpooning” channel (Nan+Cl2, Nan+O2) can describe the measurements. Using interaction parameters taken from spectroscopic studies of alkali clusters, we find very good agreement with the data. This provides a point of contact between beam scattering experiments and studies of cluster electromagnetic response properties.  相似文献   

13.
The absorption of CO and NO molecules by (H2O)20 clusters was studied by the method of molecular dynamics. In general, the clusters containing CO molecules are more stable mechanically, while the clusters with NO molecules are more stable against heating. The mobility of NO molecules in such clusters is higher than that of CO molecules. The total dipole moment, the static dielectric permeability, the number of active electrons in the clusters, and the specific number of hydrogen bonds between water molecules possess peak values when the number of doping molecules i = 6. IR absorption spectra mostly acquire a smooth shape at i > 6. Capture of CO and NO molecules by water cluster operates as anti-greenhouse effect.  相似文献   

14.
Infrared photodissociation spectra of (CH3OH) n clusters (n=2, 3 and 6) and the mixed dimer C2H4 · CH3COCH3 are presented. The clusters are generated in a supersonic jet expansion and size selected by scattering from a helium atomic beam combined with mass spectrometric detection. Continuous CO2-lasers are used to vibrationally excite the molecules in the cluster leading to rapid dissociation of the complex. Various dissociation peaks that are found in single-laser dissociation spectra can be assigned unambigously in a pump-probe experiment with two lasers to either different isomers (acetone-ethene dimer) or splitted lines of one isomer (methanol hexamer). For size distributions, the method is able to select contributions of single masses which is demonstrated for mixtures of methanol dimers and trimers.  相似文献   

15.
The (CO2)i(H2O)10 clusters with the kinetic energy corresponding to a temperature of 233 K is simulated by the molecular dynamics method. The stability of these clusters with respect to thermal, mechanical, and dielectric perturbations, as well as to the absorption of CO2 molecules, is studied. It is shown that the cluster composed of 10 water molecules remains thermodynamically stable if it captures one or two CO2 molecules. Clusters are absolutely unstable when 3 ≤ i ≤ 9. A metastable state of clusters is achieved at i > 9.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 308–314.Original Russian Text Copyright © 2005 by Galashev, Rakhmanova, Chukanov.  相似文献   

16.
Infrared laser action spectroscopy in a Fourier‐transform ion cyclotron resonance mass spectrometer is used in conjunction with ab initio calculations to investigate doubly charged, hydrated clusters of calcium formed by electrospray ionization. Six water molecules coordinate directly to the calcium dication, whereas the seventh water molecule is incorporated into a second solvation shell. Spectral features indicate the presence of multiple structures of Ca(H2O)72+ in which outer‐shell water molecules accept either one (single acceptor) or two (double acceptor) hydrogen bonds from inner‐shell water molecules. Double‐acceptor water molecules are predominately observed in the second solvent shells of clusters containing eight or nine water molecules. Increased hydration results in spectroscopic signatures consistent with additional second‐shell water molecules, particularly the appearance of inner‐shell water molecules that donate two hydrogen bonds (double donor) to the second solvent shell. This is the first reported use of infrared spectroscopy to investigate shell structure of a hydrated multiply charged cation in the gas phase and illustrates the effectiveness of this method to probe the structures of hydrated ions.  相似文献   

17.
The thermodynamic properties of pure water clusters and aqueous aggregates with either CO or CO2 molecule were calculated by the molecular dynamics method. The resulting size dependence of the surface tension of the clusters was used to determine the size of the critical seeds. The rate of homogeneous and binary nucleation in atmospheric air was estimated. The role of polar and nonpolar impurity molecules at the initial stage of steam condensation is discussed.  相似文献   

18.
19.
Electronic excitations of Xe atoms and Xe2 molecules embedded in free Ne clusters are studied with time resolved fluorescence excitation spectroscopy. Several distinct absorption bands blueshifted relativ to the first atomic resonance line of Xe are observed and are attributed to Xe or Xe2 located in different sites. For Ne clusters containing less than 300 atoms only interior sites are observed indicating that small Ne clusters are liquid-like.  相似文献   

20.
Absorption of ethane molecules by water clusters containing 10–20 molecules is studied by the molecular dynamics method. The (H2O) n (I), C2H6(H2O) n (II), and (C2H6)2(H2O) n (III) cluster systems are composed on the basis of specific statistical weights. Spectral characteristics of system and single clusters are determined in the frequency range of 0 ≤ ω ≤ 1000 cm?1. In this frequency range, both real and imaginary parts of dielectric permittivity decrease monotonically after the absorption of C2H6 molecules by an aqueous ultradispersed system. Integral coefficient of IR absorption increases, while average (over frequency) reflection coefficient decreases after the absorption of ethane molecules. The intensity of IR scattering by the systems of clusters containing C2H6 molecules lowers. Maximal values of radiation power for water clusters with various sizes are balanced with the capture of ethane molecules by the clusters, whereas oscillations in the size dependence of the density of electrons that are active with respect to IR radiation decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号