首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pulse sequence is described for the recoupling of heteronuclear dipolar interactions under MAS. The method is similar to the PISEMA experiment, but employs a well-defined amplitude modulation of one of the two radio-frequency fields. The technique is used for measurements of 1H-13C dipolar couplings in unoriented solid and liquid-crystalline samples.  相似文献   

2.
A two-dimensional (2D) double-quantum (DQ) experiment under rotational resonance (R(2)) conditions is introduced for evaluating dipolar couplings in rotating solids. The contributions from the R(2)-recoupled dipolar interaction and the J coupling can be conveniently separated in the resulting 2D R(2)-DQ spectrum, so that the unknown dipolar coupling can readily be extracted, provided that the values of the involved J coupling constants are known. Since the measured parameters are integral intensity ratios between suitably chosen absorption peaks in the 2D spectrum, the proposed method is characterized by a reduced sensitivity to relaxation parameters. The effect of rotor-modulated terms, including chemical shift anisotropy, is efficiently averaged out by synchronizing the excitation/reconversion time with the rotor period. All of these features are demonstrated theoretically by the example of two model systems, namely, isolated spin-pairs and a three-spin system. The results of the theoretical models are applied to both (13)C and (1)H nuclei to extract dipolar couplings in uniformly (13)C labeled L-alanine and a crosslinked natural rubber.  相似文献   

3.
It is shown how homonuclear distances and homonuclear dipolar lattice sums between spin-1/2 nuclei can be measured by a pulsed solid-state NMR experiment under magic-angle spinning conditions. The presented technique is based on double-quantum coherence filtering. Instead of measuring a build-up of double-quantum coherence the pulse sequence is designed to dephase double-quantum coherence. This is achieved by exciting double-quantum coherence either with the help of the through-space dipolar coupling or the through-bond dipolar coupling while the dephasing relies on the through-space dipolar coupling as selected by a gamma-encoded pulse sequence from the C/R symmetry class. Since dephasing curves can be normalized on zero dephasing, it is possible to analyze the initial dephasing regime and hence determine dipolar lattice sums (effective dipolar couplings) in multiple-spin systems. A formula for the effective dipolar coupling is derived theoretically and validated by numerical calculations and experiments on crystalline model compounds for (13)C and (31)P spin systems. The double-quantum dephasing experiment can be combined with constant-time data sampling to compensate for relaxation effects, consequently only two experimental data points are necessary for a single distance measurement. The phase cycling overhead for the constant-time experiment is minimal because a short cogwheel phase cycle exists. A 2D implementation is demonstrated on [(13)C(3)]alanine.  相似文献   

4.
Residual dipolar couplings for pairs of proximate magnetic nuclei in macromolecules can easily be measured using high-resolution NMR methods when the molecules are dissolved in dilute liquid crystalline media. The resulting couplings can in principle be used to constrain the relative orientation of molecular fragments in macromolecular systems to build a complete structure. However, determination of relative fragment orientations based on a single set of residual dipolar couplings is inherently hindered by the multi-valued nature of the angular dependence of the dipolar interaction. Even with unlimited dipolar data, this gives rise to a fourfold degeneracy in fragment orientations. In this Communication, we demonstrate a procedure based on an order tensor analysis that completely removes this degeneracy by combining residual dipolar coupling measurements from two alignment media. Application is demonstrated on (15)N-(1)H residual dipolar coupling data acquired on the protein zinc rubredoxin from Clostridium pasteurianum dissolved in two different bicelle media.  相似文献   

5.
Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C'-13Calpha and 1Halpha-13Calpha dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2Delta. For cases of limited resolution in the 2D 15N-1HN HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.  相似文献   

6.
Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C'-13Calpha and 1Halpha-13Calpha dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2Delta. For cases of limited resolution in the 2D 15N-1HN HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.  相似文献   

7.
Proton nuclear magnetic resonance (NMR) magnetization exchange is used to investigate residual dipolar couplings in a series of cross-linked poly(styrene-cobutadiene) elastomers. A new model for the dipolar unit is used for the evaluation of the signal decay in magnetization exchange experiments. It takes into account an extended residual dipolar coupling network along the polymer chain. It is shown that in the regime of short mixing times, information about the residual dipolar coupling between methine and methylene protons can be obtained which is not affected by other inter- and intramolecular dipolar couplings. The dynamic order parameter of methine-methylene protons is measured and correlated with cross-link density. This study certifies the quality of a filter for magnetization from residual dipolar couplings which exploit magnetization exchange. The filter can be used to generate contrast in NMR images of heterogeneous elastomers. The first proton NMR parameter image of a dynamic order parameter is presented for a phantom made from poly(styrene-cobutadiene) samples with different cross-link densities.  相似文献   

8.
A recently introduced density matrix picture for dipolar effects in solution NMR (1996,J. Chem. Phys.105,874) gave complete solutions for intermolecular multiple-quantum coherences for single-component samples without scalar couplings. This paper, for the first time, shows that this quantum picture can lead to explicit signal expressions for multicomponent samples of molecules with internal scalar couplings (here assumed to generate a first-order spectrum) and long-range dipolar couplings. Experimental observation of a triplet in the indirectly detected dimension for a heteronuclear CRAZED sequence (13CHCl3sample, ZQ or 2Q coherences) gives clear evidence that the coupling is due to the intermolecular dipolar coupling. We also make comparisons with classical pictures which introduce the dipolar demagnetization field in multicomponent spin systems.  相似文献   

9.
A (13)C-observe REDOR experiment is described which allows (13)C-(2)D dipolar couplings to be obtained by a universal dipolar dephasing curve. Previous (13)C-observe REDOR experiments on (13)C-(2)D spin pairs generally relied on numerical simulations to obtain the dipolar coupling. The REDOR experiment described in this article is based on a deuterium composite pulse, and the data analysis eliminates the need for numerical simulations and is the same as the traditional REDOR analysis performed on pairs of spin-12 nuclei. Copyright 2000 Academic Press.  相似文献   

10.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon-proton coupling constants in (13)C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but (1)J(CH) couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the (1)H-(1)H and long-range (1)H-(13)C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the "weak coupling" analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

11.
A method for accurately measuring H(N)-H(alpha) residual dipolar couplings is described. Using this technique, both the sign and magnitude of the coupling can be determined easily. Residual dipolar coupling between H(N)(i)-H(alpha)(i) and H(N)(i)-H(alpha)(i-1) were measured for the FK506 binding protein complexed to FK506. The experimental values were in excellent agreement with predictions based on an X-ray crystal structure of the protein/ligand complex, suggesting that these residual dipolar couplings will provide accurate structural constraints for the refinement of protein structures determined by NMR.  相似文献   

12.
A novel procedure for reconstruction of 2D separated-local-field (SLF) NMR spectra from projections of 1D NMR data is presented. The technique, dubbed SLF projection reconstruction from one-dimensional spectra (SLF-PRODI), is particularly useful for uniaxially oriented membrane protein samples and represents a fast and robust alternative to the popular PISEMA experiment which correlates (1)H-(15)N dipole-dipole couplings with (15)N chemical shifts. The different 1D projections in the SLF-PRODI experiment are obtained from 1D spectra recorded under influence of homonuclear decoupling sequences with different scaling factors for the heteronuclear dipolar couplings. We demonstrate experimentally and numerically that as few as 2-4 1D projections will normally be sufficient to reconstruct a 2D SLF-PRODI spectrum with a quality resembling typical PISEMA spectra, leading to significant reduction of the acquisition time.  相似文献   

13.
A simple and effective method is described for simultaneously measuring dipolar couplings for methine, methylene, and methyl groups in weakly oriented macromolecules. The method is aJ-modulated 3D version of the well-known [1H-13C] CT-HSQC experiment, from which theJand dipolar information are most accurately extracted by using time-domain fitting in the third, constant-time dimension. For CH2-sites, the method generally yields only the sum of the two individual13C-1H couplings. Structure calculations are carried out by minimizing the deviation between the measured sum, and the sum predicted for each methylene on the basis of the structure. For rapidly spinning methyl groups the dipolar contribution to the splitting of the outer13C quartet components can be used directly to constrain the orientation of the C-CH3bond. Measured sidechain dipolar couplings are in good agreement with an ensemble of NMR structures calculated without use of these couplings.  相似文献   

14.
A NMR strategy designed to measure simultaneously and without increased resonance overlap scalar and dipolar couplings (RDCs) in (13)C-, (15)N-labeled proteins is presented. Contrary to common schemes for simultaneous measurement of RDCs, a single reference experiment is used for the extraction of more than one type of coupling, thereby reducing the required measurement time. This is accomplished by a common reference spectrum followed by a series of interleaved experiments, in which a particular coupling dependent parameter is varied according to the quantitative J-correlation method or using accordion spectroscopy. To illustrate this idea, we have modified the 3D TROSY-HNCO and the 3D CBCA(CO)NH experiment allowing efficient measurement of one-bond (1)D(NH), (1)D(C'N), (1)D(CalphaHalpha), (1)D(CbetaHbeta), and (1)D(CalphaC') couplings in small to medium sized proteins. In addition, the experiments are expected to be useful for largely unfolded proteins, which show strong resonance overlap but have very favorable relaxation properties. Measurement of RDCs is demonstrated on uniformly (15)N-(13)C-labeled ubiquitin and on the sensory domain of the membraneous two-component fumarate sensor DcuS of Escherichia coli (17 kDa). DcuS was found to be unstable and to precipitate in one to two weeks. RDCs obtained from these experiments are in good agreement with the 1.8A X-ray structure of ubiquitin.  相似文献   

15.
A novel MAS NMR approach is presented for the determination of heteronuclear dipolar couplings in unoriented materials. The technique is based on the proton-detected local field (PDLF) protocol, and achieves dipolar recoupling by R-type radio-frequency irradiation. The experiment, which is called R-PDLF spectroscopy, is demonstrated on solid and liquid-crystalline systems. For mobile systems, it is shown that the R-PDLF scheme provides better dipolar resolution as compared to techniques combining conventional separated local field (SLF) spectroscopy with R-type recoupling.  相似文献   

16.
J couplings between (13)C(alpha) and (1)H(N) across hydrogen bonds in proteins are reported for the first time, and a two- or three-dimensional NMR technique for their measurement is presented. The technique exploits the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms, for sensitivity enhancement. The 2D or 3D spectra exhibit E.COSY patterns where the splittings in the (13)CO and (1)H(N) dimensions are (1)J((13)C(alpha), (13)CO) and the desired (3h)J((13)C(alpha), (1)H(N)), respectively. A demonstration of the new method is shown for the (15)N,(13)C-labeled protein chymotrypsin inhibitor 2 where 17 (3h)J((13)C(alpha), (1)H(N)) coupling constants ranging from 0 to 1.4 Hz where identified and all of positive sign.  相似文献   

17.
The orientation data provided by solid-state NMR can provide a great deal of structural information about membrane proteins. The quality of the information provided is, however, somewhat degraded by sign degeneracies in measurements of the dipolar coupling tensor. This is reflected in the dipolar coupling penalty function used in atomic refinement, which is less capable of properly restraining atoms when dipolar sign degeneracies are present. In this report we generate simulated solid-state NMR data using a variety of procedures, including back-calculation from crystal structures of alpha-helical and beta-sheet membrane proteins. We demonstrate that a large fraction of the dipolar sign degeneracies are resolved if anisotropic dipolar coupling measurements are correlated with anisotropic chemical shift measurements, and that all sign degeneracies can be resolved if three data types are correlated. The advantages of correlating data are demonstrated with atomic refinement of two test membrane proteins. When refinement is performed using correlated dipolar couplings and chemical shifts, perturbed structures converge to conformations with a larger fraction of correct dipolar signs than when data are uncorrelated. In addition, the final structures are closer to the original unperturbed structures when correlated data are used in the refinement. Thus, refinement with correlated data leads to improved atomic structures. The software used to correlate dipolar coupling and chemical shift data and to set up energy functions and their derivatives for refinement, CNS-SS02, is available at our web site.  相似文献   

18.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for (1)H--(13)C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR pi-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized (1)H--(13)C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with (13)C in natural abundance, as well as simulations, confirm the very weak effect of (1)H--(1)H homonuclear couplings on the spectra recorded with spinning frequencies of 25--30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CH(n) groups is discussed, and (13)C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

19.
By exploiting the homology in the form of the truncated high-field homonuclear dipole–dipole and quadrupole coupling Hamiltonians, we have previously demonstrated that a simple adaptation of a rotor-synchronized pulse sequence (DRAMA) used for the recovery of dipole–dipole couplings can also be used to resurrect quadrupole couplings (QUADRAMA). In the canonical implementation of these recovery pulse sequences, the couplings are not significantly scaled down from their static sample values. While such minimal scaling is of course desirable in the recovery of typical homonuclear dipolar couplings ( ≤ 2 kHz) and small quadrupole couplings, it is clearly not ideal for the recovery of the much larger quadrupole couplings (20–200 kHz) often encountered in solid-state 2H NMR. In such a case, some prior knowledge of the order of magnitude of the coupling is required to optimize the experimental conditions for QUADRAMA. In order to overcome this drawback, in this study, we have developed a general and optimized strategy for implementing the QUADRAMA technique which does not require any knowledge of the size of the coupling νQ. Experimental tests of the optimized protocol demonstrate that by judicious choices of a combination of scaling factors and recoupling times, 2H quadrupole couplings ranging over an order of magnitude from 3 to 42 kHz can be measured. Since this optimized protocol can reliably be used to recover couplings over a broad range, it expands the range of systems accessible to study by 2H NMR into a realm where static sample NMR and simple MAS NMR may fail.  相似文献   

20.
Dipolar couplings contain information on internuclear distances as well as orientational constraints. To characterize the structure of the antimicrobial peptide gramicidin S when bound to model membranes, two rigid 4-CF3-phenylglycine labels were attached to the cyclic backbone such that they reflect the behavior of the entire peptide. By solid state 19F NMR we measured the homonuclear dipolar couplings of the two trifluoromethyl-groups in oriented membrane samples. Using the CPMG experiment, both the strong couplings within each CF3-group as well as the weak coupling between the two CF3-groups could be detected. An intra-CF3-group dipolar coupling of 86 Hz and a weak inter-group coupling of 20 Hz were obtained by lineshape simulation of the complex dipolar spectrum. It is thus possible to explore the large distance range provided by 19F-labels and to resolve weak dipolar couplings even in the presence of strong intra-CF3 couplings. We applied this approach to distinguish and assign two epimers of the labeled gramicidin S peptide on the basis of their distinct 19F dipolar coupling patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号