首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The nature of intermediate species and their reactions were studied by laser pulse photolysis for a photochromic system consisting of 8,8′-diquinolyl disulfide (RSSR) and a planar NiII complex di(mercaptoquinolinato)nickel(II) (Ni(SR)2) in toluene and benzene solutions. Under exposure to laser radiation, disulfide RSSR dissociates to two RS· radicals, whose spectrum has an intense absorption band with a maximum at λ = 400 nm (ε = 8400 L mol−1 cm−1). The radicals disappear by recombination (2k rec = 4.6 · 109 L mol−1 s−1). In the presence of the Ni(SR)2 complex, coordination of the radical (k coord = 4.4 · 109 L mol−1 s−1) competes with recombination to form a radical complex RS· Ni(SR)2 having an intense absorption band with a maximum at 460 nm (ε = 16 600 L mol−1 cm−1). This species decays in the second-order reaction (2k = 4.6 · 104 L mol−1 s−1). Since the photochromic system returns to the initial state, the reaction of two radical complexes is assumed to produce radical recombination and reduction of the disulfide and Ni(SR)2 complex. Analysis of the kinetic data showed that some RS· radicals decay in the microsecond time interval due to the reaction with the RS· Ni(SR)2 radical complex (k = 3.1 · 109 L mol−1 s−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2291–2300, October, 2005.  相似文献   

2.
The interaction between the radical anions C60 ·− and divalent d- and f-metal (Co, Fe, Ni, Mn, Eu, Cd) cations in DMF and acetonitrile-benzonitrile (AN-BN) mixture was studied. Black solid polycrystalline salts (C60 ·−)2{(M2+)(DMF) x } (x = 2.4–4, 1–6) containing the radical anions C60 ·− and metal(ii) cations solvated by DMF were prepared for the first time and their optical and magnetic properties were studied. The salts containing Co2+, Fe2+, and Ni2+ are characterized by antiferromagnetic interactions between the radical anions C60 ·−, which result in unusually large broadening of the EPR signal of C60 ·− upon lowering the temperature (from 5.55–12.6 mT at room temperature to 35–40 mT at 6 K for Co2+ and Ni2+). The salts containing Mn2+ and Eu2+ form diamagnetic dimers (C60 )2, which causes a jumpwise decrease in the magnetic moment of the complexes and disappearance of the EPR signal of C60 ·− in the temperature range 210–130 K. A feature of salt 6 is magnetic isolation of the radical anions C60 ·− due to the presence of diamagnetic cation Cd2+. The salts prepared are unstable in air and decompose in o-dichlorobenzene or AN. Reactions of C60 ·− with metal(ii) cations in AN-BN mixture result in decomposition products of the salts that contain neutral fullerene dimers and metals solvated by BN. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1909–1919, September, 2008.  相似文献   

3.
Dinuclear copper(II) complexes with acyldihydrazones of 2-hydroxy-5-nitroacetophenone (H4L) of the composition Cu2(Py)xmEtOH were synthesized and characterized. In these complexes, the coordination polyhedra of the copper atoms are linked to each other by a polymethylene chain of different lengths, from one to five monomer units. The structure of the [Cu2L·4Mrf] complex (Mrf is morpholine) based on acyldihydrazone of malonic acid was established by X-ray diffraction. The copper(II) atoms in this complex are [4+1]-coordinated and are spaced by 6.94 Å. At room temperature, the signal in the ESR spectra of solutions of the complexes based on acyldihydrazones of malonic, succinic, glutaric, and adipic acids has a seven-line hyperfine structure with the constant of (35.3–38.8)·10−4 cm−1 (g = 2.109–2.112) due to exchange interactions between unpaired electrons and two equivalent copper nuclei. An increase in the length of the polymethylene chain to five monomer units hinders exchange interactions, and the ESR signal of the complex based on acyldihydrazone of pimelic acid has a four-line hyperfine structure with a Cu = 72.7·10−4 cm−1 typical of mononuclear copper(II) complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 229–234, February, 2007.  相似文献   

4.
A method was developed for the synthesis of mixed-metal heterospin compounds with the direct coordination of the nitroxide fragment based on the replacement of acetonitrile molecules in the heterotrinuclear complex [Co2Gd(NO3)Piv6(CH3CN)2] with nitroxide molecules. The molecular and crystal structure of the heterospin mixed-ligand heterotrinuclear CoII, GdIII, CoII complex [Co2Gd(NO3)Piv6(NIT-Me)2], where NIT-Me is stable nitronyl nitroxide, was established. The magnetic properties of this complex were investigated in the temperature range of 2–300 K. The coordination of nitroxide groups to CoII ions is responsible for strong exchange interactions between the unpaired electrons in the exchange clusters {>-·O-CoII}, resulting in the virtually complete spin coupling between each coordinated >N-·O group and one of the unpaired electrons of each CoII ion at temperatures below 200 K. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1742–1745, September, 2007.  相似文献   

5.
Spacer-armed dinuclear copper(II) complexes with condensation products of isophthalic and terephthalic acid dihydrazides with salicylaldehyde and 2-hydroxyacetophenone were synthesized and studied by EPR and X-ray diffraction. The compositions and structures of most of the complexes were determined by elemental analysis, thermogravimetric analysis, and IR spectroscopy. The structure of the copper(II) complex with acyldihydrazone of salicylaldehyde and 1,3-benzenedicarboxylic acid (H4L) with the composition [Cu2L1·2morph·MeOH] (morph is morpholine) was established by X-ray diffraction. The CuII atoms are spaced by 10.29 Å and are structurally nonequivalent. One copper cation has a square-planar coordination formed by donor atoms (2 N + O) of the doubly deprotonated acylhydrazine fragment and the N atom of the morpholine molecule. The second copper atom is additionally coordinated by a methanol molecule through the oxygen atom, so that this copper atom is in a tetragonal-pyramidal coordination with the oxygen atom in the axial position. The EPR spectra of liquid solutions of the complexes based on 1,4-benzenedicarboxylic acid acyldihydrazones and 1,3-benzenedicarboxylic acid bis(salicylidene)hydrazone at room temperature show a four-line hyperfine structure with the constant a Cu = 54.4–67.0·10−4 cm−1 (g = 2.105–2.147), which is indicative of the independent behavior of the paramagnetic centers. The EPR spectrum of a solution of the complex based on isophthalic acid and 2-hydroxyacetophenone shows the seven-line hyperfine structure corresponding to two equivalent copper nuclei (g = 2.11, a Cu = 36.5·10−4 cm−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1898–1905, October, 2007.  相似文献   

6.
New dinuclear ruthenium manganese complexes of general composition (bpy)2Ru(L)MnClx(H2O)2 (L is 1,10-phenanthroline-5,6-dione, 3,3′-dicarboxy-2,2′-bipyridyl, or bis(pyrazolyl); x = 2 or 4) were synthesized by the reaction of (bpy)2Ru(L) with MnCl2 · 4H2O. These compounds and the starting mononuclear ruthenium complexes were studied by spectrophotometric and electrochemical methods in MeCN. The position of the charge-transfer band RuII → L in the spectra depends on the donor-acceptor characteristics of the ligand L. For the dinuclear complex under study, the formal potentials of reversible one-electron oxidation of RuII are in the range of 0.9–1.2 V (vs. the standard hydrogen electrode), whereas oxidation of MnII occurs at more positive (by 0.1–0.2 V) potentials. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2281–2285, October, 2005.  相似文献   

7.
The reactions of 2-(2-pyridyl)benzothiazole (1) with MX2·nH2O salts (M = NiII, CoII, or CuII; X = Cl or ClO4; n = 0–2) in EtOH afforded the corresponding complexes. Depending on the nature of the counterion in the starting metal salt, the reactions give compounds of composition M(1)Cl2·nH2O or Cu(1)2(ClO4)2·H2O. The molecular and crystal structure of the CuII(1)2(ClO4)2·H2O complex was established by X-ray diffraction. The copper atom in this complex has a distorted tetragonal-pyramidal ligand environment and is coordinated by four nitrogen atoms of two ligand molecules and one water molecule. Electrochemical study of the ligand and the resulting complexes by cyclic voltammetry and at a rotating disk electrode demonstrated that ligand 1 stabilizes reduced forms of complexes containing Ni, Co, or Cu atoms in the oxidation state +1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1738–1744, October, 2006.  相似文献   

8.
CoII and CoIII complexes containing nitrite and tridentate aromatic amine compounds [bis(6-methyl-2-pyridylmethyl)amine (Me2bpa) and bis(2-pyridylmethyl)amine (bpa)] have been prepared as models of the catalytic center in Co-substituted nitrite reductase: [CoII(Me2bpa)(NO2)Cl]2 · acetone (2), CoII(Me2bpa)(NO2)2 (3), CoII(bpa)(NO2)Cl (4), CoII(bpa)(NO2)2 (5), CoIII(Me2bpa)(NO2)(CO3) (6), and CoIII(bpa)(NO2)3 (7). The X-ray crystal structure analyses of these CoII and CoIII complexes indicated that the geometries of the cobalt centers are distorted octahedral and the Me2bpa and bpa with three nitrogen donors exhibit mer- (2, 3, and 7) and fac-form (4 and 6). The coordination mode of nitrite depends on the cobalt oxidation state, to CoII through the oxygen (nitrito coordination, O- and O,O-coordination) and to CoIII through nitrogen (nitro coordination, N-coordination mode). These findings are consistent with the results of their IR spectra, except that another oxygen of the O-coordinated nitrito group in 3 might interact weakly with CoII according to its IR spectrum. Reductions of the nitrite in 2, 3, 4, and 5 to nitrogen monoxide were not accelerated in the presence of proton, perhaps due to the nitrito coordination in these CoII complexes.  相似文献   

9.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

10.
Complexes of fullerenes C60 and C70 with cobalt(II) and manganese(II) tetraphenylporphyrinates of compositions Mn(TPP)·(C60)2(CS2)1.5 (1), Mn(TPP)·C70(CS2) x , wherex<=1.25 (2), Co(TPP)·C60(CS2)0.5 (3), and Co(TPP)·C70(CS2) x , wherex<0.25 (4), were synthesized and studied by ESR spectroscopy. At 77 K, complexes1 and2 have singlet ESR spectra characteristic of the low-spin (S=1/2) state of MnII, withg=2.002 and linewidths of 250 G and 300 G, respectively, and differing significantly from that of the initial MnII(TPP) (g 1=5.9 andg=2.0,S=5/2). The spectra of complexes1 and2 exposed to oxygen exhibit hyperfine structure due to interaction with55Mn and14N nuclei. The ESR spectra of complexes3 and4 are asymmetric (<g>=2.4, ΔH pp=(500–600) G), which is due to the overlap of parallel and perpendicular spectral components. The absence of ESR signals from C60 .− and C70 .− radical anions makes it possible to conclude that the formation of complexes1–4 is not accompanied by electron transfer from Co(TPP) and Mn(TPP) to fullerences C60 and C70. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 722–725, April, 1999.  相似文献   

11.
The kinetics of the electron-transfer reactions between promazine (ptz) and [Co(en)2(H2O)2]3+ in CF3SO3H solution ([CoIII] = (2–6) × 10−3 m, [ptz] = 2.5 × 10−4 m, [H+] = 0.02 − 0.05 m, I = 0.1 m (H+, K+, CF3SO 3 ), T = 288–308 K) and [Co(edta)] in aqueous HCl ([CoIII] = (1 − 4) × 10−3 m, [ptz] = 1 × 10−4 m, [H+] = 0.1 − 0.5 m, I = 1.0 m (H+, Na+, Cl), T = 313 − 333 K) were studied under the condition of excess CoIII using u.v.–vis. spectroscopy. The reactions produce a CoII species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (k obs) on [CoIII] with a non-zero intercept was established for both redox processes. The rate of reaction with the [Co(en)2(H2O)2]3+ ion was found to be independent of [H+]. In the case of the [Co(edta)] ion, the k obs dependence on [H+] was linear and the increasing [H+] accelerates the rate of the outer-sphere electron-transfer reaction. The activation parameters were calculated as follows: ΔH = 105 ± 4 kJ mol−1, ΔS = 93 ± 11 J K−1mol−1 for [Co(en)2(H2O)2]3+; ΔH = 67 ± 9 kJ mol−1, ΔS = − 54 ± 28 J K−1mol−1 for [Co(edta)].  相似文献   

12.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The kinetics of the oxidation of promazine by trisoxalatocobaltate(III) were studied in the presence of a large excess of the cobalt(III) in tris buffer solution using u.v.–vis spectroscopy ([CoIII] = (0.6 − 2) × 10−3 M, [ptz] = 6 × 10−5 M, pH = 6.6–7.8, I = 0.1 M (NaCl), T = 288−308 K, l = 1 cm). The reaction proceeds via two consecutive reversible steps. In the first step, the reaction leads to formation of cobalt(II) species and a stable cationic radical. In the second step, cobalt(III) is reduced to cobalt(II) ion and a promazine radical is oxidized to the promazine 5-oxide. Linear dependences of the pseudo-first-order rate constants (k 1 and k 2) on [CoIII] with a non-zero intercept were established for both redox processes. Rates of reactions decreased with increasing concentration of the H+ ion indicating that the promazine and its radical exist in equilibrium with their deprotonated forms, which are reactive reducing species. The activation parameters for reactions studied were as follows: ΔH = 44 ± 1 kJ mol−1, ΔS = −100 ± 4 JK−1 mol−1 for the first step and ΔH = 25 ± 1 kJ mol−1, ΔS = −169 ± 4 J K−1 mol−1 for the second step, respectively. Mechanistic consequences of all the results are discussed.  相似文献   

14.
The kinetics of the oxidation of promazine and chlorpromazine by hexaimidazolcobalt(III) were studied in the presence of a large excess of cobalt(III) and H+ ions using u.v.–vis. spectroscopy ([CoIII] = (1–6) × 10−3 m, [ptz] = (2.5–10) × 10−5 m, [H+] = 0.05–0.8 m, I = 1.0 m (H+, Na+, Cl), T = 333–353 K, l = 1 cm). In each case, the reversible reaction leads to formation of cobalt(II) species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (kobs) on [CoIII] with a non-zero intercept was established for both phenothiazine derivatives. A marked difference in the observed reaction rate for promazine and chlorpromazine is associated with the difference in its ability to undergo oxidation and is consistent with a trend in the redox potential changes for these reductants. The activation parameters for reactions studied were determined. Mechanistic consequences of all the results are discussed.  相似文献   

15.
Interaction of cobalt cysteinylglycine with histidylserine and histidylphenylalanine was investigated in a 1 : 1 : 1 ratio at 35°C and 0·10 mol dm−3 ionic strength. Their stabilities and geometries were determined. Their DNA binding and cleavage properties were investigated. The intrinsic binding constants (K b ) for DNA bound 1 and 2 (3·03 × 103 M−1 for 1 and 3·87 × 103 M−1 for 2) were determined. Even though the negative charge on the complexes reduced their affinity for DNA, there was an enhancement of binding through specificity. The degradation of plasmid DNA was achieved by cobalt dipeptide complexes [CoII(CysGly)(HisSer)] (1) and [CoII(CysGly)(HisPhe)] (2). Cleavage experiments revealed that 1 and 2 cleave supercoiled DNA (form I) to nicked circular (form II) through hydrolytic pathway at physiological pH. The DNA hydrolytic cleavage rate constants for complexes 1 and 2 were determined to be 0·62 h−1, for 1 and 0·38 h−1 for 2 respectively.  相似文献   

16.
The oxidation of lower aliphatic alcohols C1–C4 with dioxygen to form the corresponding carbonyl compounds in the presence of the PdII tetraaqua complexes and FeII-FeIII aqua ions in an aqueous medium was studied at 40–80 °C. The introduction of an aromatic compound (acetophenone, benzonitrile, phenylacetonitrile, o-cyanotoluene, nitrobenzene) and FeII aqua ion instead of the FeIII aqua ion into the reaction system increases substantially the catalytic activity and the yield of the carbonyl compound. The key role of the Pd species in the intermediate oxidation state stabilized by the aromatic additive in the catalytic cycle of alcohol oxidation with dioxygen to the carbonyl compound was shown. An increase in the kinetic isotope effect with an increase in the temperature of methanol oxidation indicates a change in the rate-determining step of alcohol oxidation with dioxygen in the presence of PdII-FeII-FeIII and the aromatic compound. At temperatures below 60 °C, the catalytically active palladium species are mainly formed upon the reduction of the PdII tetraaqua complex with the FeII aqua ion, whereas at higher temperatures the reaction between the alcohol and PdII predominates. The mechanism and kinetic equation of the process were proposed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 842–848, May, 2007.  相似文献   

17.
The reaction of 5-[2-(methylthio)ethyl]-3-phenyl-2-thioxoimidazolidin-4-one (LH) with salts MCl2· xH2O (M = Co, Ni, Cu; x = 2, 6) afforded the [M(L)Cl]n complexes of NiII, CoII, and CuII. The electrochemical behavior of the LH ligand and its complexes was studied using the cyclic voltammetry and rotating disk electrode techniques. The structures of the synthesized compounds were determined by the data of UV—Vis and IR spectroscopy, mass spectrometry, and electrochemical characteristics. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 339–343, February, 2007.  相似文献   

18.
The reactions of the Pd/ZrO2/SO4-catalyzed oxidation of ethylene, propene, and but-1-ene in a 0.1–1.5 M solution of perchloric acid with iron(III) aqua ions to carbonyl compounds, viz., acetaldehyde, acetone, and methyl ethyl ketone, respectively, were studied. The formation of palladium nanoparticles (5 nm) in solution on contact of the initial heterogeneous Pd/ZrO2/SO4 catalyst with perchloric acid was proved by transmission electron microscopy. The palladium nanoparticles are assumed to play the key role in olefin oxidation with the iron(III) aqua ions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 627–632, April, 2006.  相似文献   

19.
Transition metal complexes (NiII, CoII, and CuII) with tetradentate N2S2-type ligands (L), which are reaction products of 2-thio-substituted benzaldehydes with aromatic amines (3-aminopyridine or 2-aminothiophenol), were synthesized for the first time. The complexes have the composition L·MX2 or L·2MX2 (X = Cl or ClO4). The electrochemical behavior of the ligands and complexes was studied by cyclic voltammetry and rotating disk electrode voltammetry. Depending on the structure of the complexes, the metal atom in the latter is initially reduced in a one-or two-electron process. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2115–2124, November, 2007.  相似文献   

20.
A series of complexes of fullerenes C60 and C70 with metal dithiocarbamates {MII(R2dtc)2}·Cm (m = 60 or 70) and metal dithiocarbamates coordinated to nitrogen-containing ligands (L), {MII(R2dtc)2)x·L}·C60 (x = 1 or 2), where M = Cu, Zn, Cd, Hg, Mn, or Fe, R = Me, Et, Prn, Pri, or Bun, L is 1,4-diazabicyclo[2.2.2]octane (DABCO), N,N′-dimethylpiperazine, or hexamethylenetetramine, were synthesized. The shape of dithiocarbamate molecules is sterically compatible with the spherical shape of C60, resulting in an efficient interaction between their π systems. The resulting compounds are characterized by a layered or three-dimensional packing of the fullerene molecules. In the C60 complexes, iron(II) and manganese(II) dithiocarbamates exist in the high-spin states (S = 2 and 5/2). The magnetic susceptibility of {MII(Et2dtc)2}2·Cm (M = Fe or Mn, m = 60 or 70) in the temperature range of 200–300 K is described by the Curie-Weiss law with Θ = −250 and −96 K and with maxima at 110 and 46 K, respectively, which is indicative of a strong antiferromagnetic spin coupling between MII. The Weiss constants for the [{MII(Et2dtc)2}2·DABCO]·C60·(DABCO)2 complexes (M = Fe or Mn) are 1.7 and 0.3 K, respectively. The magnetic moments of the complexes containing Fe and Mn dithiocarbamates slightly increase at temperatures below 50 and 35 K, respectively, which is evidence of the ferromagnetic spin coupling between MII in {MII(Et2dtc)2}2·DABCO. Single crystals of the complexes exhibit low dark conductivity (10−10–10−11 S cm−1). The visible light irradiation of these crystals leads to an increase in the photocurrent by two–three orders of magnitude. The photogeneration of free charge carriers in the complexes occurs both due to the photoexcitation of metal dithiocarbamate (CuII(Et2dtc)2) and through the charge transfer from metal dithiocarbamate (MII(Et2dtc)2, M = Zn or Cd) to C60. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2072–2087, November, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号