首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The differential capacitance and voltammograms of electrodes that contain single-walled carbon nanotubes are measured in aqueous electrolytes. The discovered dependence of the capacitance on the measurement frequency is attributed to structural features of nanomaterials used. Electrochemical characteristics of nanotube electrodes are close to those of glassy carbon electrodes, with the difference that the discharge current in the former is substantially higher at cathodic potentials in the presence of N2O. This effect is presumably caused by an autoelectron emission of electrons from nanotubes into electrolyte.  相似文献   

2.
Voltammograms of electrodes based on nanostructured carbon of different morphology (single-wall carbon nanotubes, carbon nanofilaments, columnar structures) are taken in hexamethylphosphortriamide solutions. For all listed electrodes, direct experimental proof of the electron injection to the electrolyte solution at moderate cathodic potentials is obtained. It is found that this phenomenon is associated with the existence of atomically sharp spots at the electrode surface, which operate as local cathodes for the electron emission. It is shown that the current-voltage characteristics for the electron injection to the electrolyte solution differ from those for the field electron emission current at the electrode/vacuum interface.  相似文献   

3.
For composite electrodes based on active carbon DCL Supra 30, ordered mesoporous carbon, and synthetic carbon material Sibunit, the electrical double layer capacitance is studied. The original carbon samples are characterized by the methods of gas adsorption, X-ray diffraction, and transmission electron microscopy. The mesoporous structure of the material synthesized by the template method provides the maximum rate of ion transport in pores and demonstrates an insignificant decrease in the specific capacitance (9.5% in an aqueous electrolyte and 1.1% in an nonaqueous electrolyte) with an increase in the polarizing current.  相似文献   

4.
The role of transport and re-adsorption processes on the oxygen reduction reaction (ORR), and in particular on its selectivity was studied using nanostructured model electrodes consisting of arrays of Pt nanostructures of well-defined size and separation on a planar glassy carbon (GC) substrate. The electrochemical measurements were performed under controlled transport conditions in a double-disk electrode thin-layer flow-cell configuration; the model electrodes were fabricated by colloidal lithography techniques, yielding Pt nanostructures of well defined and controlled size and density (diameter: 140 or 85 nm, height: 20 or 10 nm, separation: from 1-2 to more than 10 diameters). The nanostructured model electrodes were characterized by scanning electron microscopy and electrochemical probing of the active surface area (via the hydrogen adsorption charge). The electrocatalytic measurements revealed a pronounced variation of the hydrogen peroxide yield, which increases by up to two orders of magnitude with increasing separation and decreasing size of the Pt nanostructures. Similar, though less pronounced effects were observed upon varying the electrolyte flow and thus the mass transport characteristics. These effects are discussed in a reaction model which includes (i) direct reduction to H(2)O on the Pt surface and (ii) additional H(2)O(2) formation and desorption on both Pt and carbon surfaces and subsequent partial re-adsorption and further reduction of the H(2)O(2) molecules on the Pt surface.  相似文献   

5.
6.
Voltammograms for electrodes containing nanostructured carbon of various morphology (single-walled carbon nanotubes, filament, columnar structures) are obtained in neutral aqueous electrolytic solutions. Experimental proofs for the existence of injection of solvated electrons into electrolytic solutions at moderate cathodic potentials are presented for all the electrodes. It is established that this effect is connected with the presence of atomically sharp areas on the electrode surfaces. It is assumed that the reason for the appearance of solvated electrons is the autoelectron emission at the interface between the conducting surface of the carbon material and the electrolytic solution. By studying the nitrate anion reduction it is shown that the reduction over-voltage of stable compounds may be lowered by substituting a fast homogeneous reaction of solvated electrons with the initial substance for the hindered heterogeneous stage of the first electron transfer.  相似文献   

7.
1 M solutions of NaClO4 mixed with ethylene carbonate, dimethyl carbonate, and fluoroethylene carbonate were studied as electrolytes for a double-layer supercapacitor with electrodes made of Norit DLC Supra 30 activated carbon. It was shown that the specific capacity of activated carbon depends on the electrolyte composition, range of cycling voltages, and current density. The maximum specific capacitance of 40 F g–1 was obtained in 1 M NaClO4 mixed with ethylene carbonate: dimethyl carbonate: fluoroethylene carbonate (4: 5: 1) at a current density of 36 mA g–1 in the range 10–2300 mV. The minimum specific capacitance was obtained under the same cycling conditions in the electrolyte with 1 M NaClO4 + ethylene carbonate: dimethyl carbonate (1: 1). The variation of the specific capacitance with the electrolyte composition and range of cycling voltages is accounted for by the existence of a pseudocapacitance caused by the occurrence of side processes on the surface of activated carbon. The impedance spectroscopy was used to find that the introduction of fluoroethylene carbonate into the electrolyte positively affects the charge-transfer resistance and favors an increase in the specific capacitance of activated carbon.  相似文献   

8.
Electrochemical characteristics for the nanoporous carbon|Et4NBF4+acetonitrile interface have been studied by cyclic voltammetry and impedance spectroscopy methods. The influence of the electrolyte concentration and thickness of the nanoporous electrode material on the shape of the cyclic voltammetry and impedance curves has been established and the reasons for these phenomena are discussed. A value of zero charge potential, depending slightly on the structure and concentration of the electrolyte, the region of ideal polarizability and other characteristics have been established. The nanoporous nature of the carbon electrodes introduces a distribution of resistive and capacitive elements, giving rise to complicated electrochemical behaviour. Analysis of the complex plane plots shows that the nanoporous carbon|Et4NBF4+acetonitrile electrolyte interface can be simulated by an equivalent circuit, in which two parallel conduction paths in the solid and liquid phases are interconnected by the double-layer capacitance in parallel with the complex admittance of the hindered reaction of the charge transfer or of the partial charge transfer (i.e. adsorption stage limited) process. The values of the characteristic frequency depend on the electrolyte concentration and electrode potential, i.e. on the nature of the ions adsorbed at the surface of the nanoporous carbon electrode. The value of the solid state phase resistance established is independent of the thickness of the electrode material.  相似文献   

9.
Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.  相似文献   

10.
Composite electrodes of vertically aligned carbon nanotubes (VACNT) were synthesized on carbon fiber (CF) substrate by pyrolysis of camphor/ferrocene using a SiO2 interlayer as a barrier against metal diffusion into the substrate. Two treatments were used to remove iron from CF/VACNT structure: thermal annealing at high temperature under inert atmosphere and electrochemical oxidation in H2SO4 solution. The composites were characterized by scanning electron microscopy and Raman scattering spectroscopy. Besides, the electrochemical behavior of CF/VACNT was analyzed by cyclic voltammetry and charge/discharge tests. CF/VACNT composite submitted to the electrochemical oxidation showed the best electrochemical performance, with high specific capacitance, which makes it very attractive as electrode for supercapacitors.  相似文献   

11.
The adsorption of adamantane, adamantanol, thiocamphor, and sodium cryptate on electrodes of single-walled carbon nanotubes (SWNT) from dimethylsulfoxide (DMSO) solutions is studied by measuring the differential capacitance (C) vs. potential (E) dependences and cyclic voltammograms. In the tested systems, the high surface activity of these surfactants is observed to result in a noticeable increase in the C of such electrodes in the range of 0.2 ≤ E ≤ −(0.9−1.1) V (SCE). As in the case of aqueous solutions, this experimental fact is explained by the appearance of the so-called Rehbinder effect (the adsorption-induced decrease in the strength), which, in this particular case, consists in a decrease in the surface energy of a solid with the formation of adsorption layers on the side surfaces of SWNTs combined into bundles to afford the partial splitting of these bundles and, as a consequence, the increase in the nanotube surface accessible to the electrolyte. At the same time, the obtained results suggest that for the adsorption of surfactants from nonaqueous solvents (in contrast to aqueous), the interaction between solvent and adsorbate molecules may become important.  相似文献   

12.
Cathodes for supercapacitors with enhanced capacitive performance are prepared using MnO2 as a charge storage material and carbon nanotubes (CNT) as conductive additives. The enhanced capacitive properties are linked to the beneficial effects of catecholate molecules, such as chlorogenic acid and 3,4,5-trihydroxybenzamide, which are used as co-dispersants for MnO2 and CNT. The dispersant interactions with MnO2 and CNT are discussed in relation to the chemical structures of the dispersant molecules and their biomimetic adsorption mechanisms. The dispersant adsorption is a key factor for efficient co-dispersion in ethanol, which facilitated enhanced mixing of the nanostructured components and allowed for improved utilization of charge storage properties of the electrode materials with high active mass of 40 mg cm−2. Structural peculiarities of the dispersant molecules are discussed, which facilitate dispersion and charging. Capacitive properties are analyzed using cyclic voltammetry, chronopotentiometry and impedance spectroscopy. A capacitance of 6.5 F cm−2 is achieved at a low electrical resistance. The advanced capacitive properties of the electrodes are linked to the microstructures of the electrodes prepared in the presence of the dispersants.  相似文献   

13.
Voltammograms for electrodes fabricated of nanostructured carbon of various morphology (nanotube paper, columnar and filament structures) in hexamethylphosphoric triamide (HMPA) solution have been obtained and analysed. Intensive dark-blue coloration near cathode surface at potentials as low as E  −1.2 V (s.c.e.) has been observed. An ESR (electron spin resonance) spectrum of this frozen dark-blue solution was recorded. This spectrum coincides with one of free electrons. Experimental proofs of the existence of electron emission into electrolytic solutions at moderate cathodic potentials are present for all electrodes. This effect is established to be connected with the presence of atomically sharp areas on the electrode surfaces.  相似文献   

14.
Electric double-layer capacitors (EDLCs) are composed of two activated carbon (AC) electrodes and an electrolyte/separator, in which the ACs contain numbers of surface oxygen functionalities (SOFs). In this work, the effect of SOFs on the EDLC’s capacitance in non-aqueous electrolytes is studied by using a 1.0 m (molality) LiPF6 3:7 (wt.) ethylene carbonate-ethyl methyl carbonate electrolyte and a commercial activated carbon. Results show that the SOFs on one hand contribute to Faradic pseudocapacitance, and on the other hand adversely reduce the EDLC’s performances, including the initial reversibility, coulombic efficiency, and capacitance retention. It is found that the AC behaves significantly different in the Li/AC half cells and in the AC/AC full cells and that the SOF’s pseudocapacitance increases with widening the EDLC’s operating voltage. The latter is attributed to the large-voltage hysteresis of the redox of SOFs. In this paper, the AC’s unique behaviors in Li salt electrolyte are presented, and a possible mechanism for the observed behaviors is proposed.  相似文献   

15.
An electrical effect, the supercapacitive swing adsorption (SSA) effect is reported, which allows for reversible adsorption and desorption of carbon dioxide by capacitive charge and discharge of electrically conducting porous carbon materials. The SSA effect can be observed when an electrically conducting, nanoporous carbon material is brought into contact with carbon dioxide gas and an aqueous electrolyte. Charging the supercapacitor electrodes initiates the spontaneous organization of electrolyte ions into an electric double layer at the surface of each porous electrode. The presence of this double layer leads to reversible, selective uptake and release of the CO2 as the supercapacitor is charged and discharged.  相似文献   

16.
The present work reports the structural and electrochemical properties of carbon-modified nanostructured TiO(2) electrodes (C-TiO(2)) prepared by anodizing titanium in a fluoride-based electrolyte followed by thermal annealing in an atmosphere of methane and hydrogen in the presence of Fe precursors. The C-TiO(2) nanostructured electrodes are highly conductive and contain more than 1 × 10(10) /cm(2) of nanowires or nanotubes to enhance their double layer charge capacitance and electrochemical stability. Electrogenerated chemiluminescence (ECL) study shows that a C-TiO(2) electrode can replace noble metal electrodes for ultrasensitive ECL detection. Dynamic potential control experiments of redox reactions show that the C-TiO(2) electrode has a broad potential window for a redox reaction. Double layer charging capacitance of the C-TiO(2) electrode is found to be 3 orders of magnitude higher than an ideal planar electrode because of its high surface area and efficient charge collection capability from the nanowire structured surface. The effect of anodization voltage, surface treatment with Fe precursors for carbon modification, the barrier layer between the Ti substrate, and anodized layer on the double layer charging capacitance is studied. Ferrocene carboxylic acid binds covalently to the anodized Ti surface forming a self-assembled monolayer, serving as an ideal precursor layer to yield C-TiO(2) electrodes with better double layer charging performance than the other precursors.  相似文献   

17.
The adsorption of a complex of sodium cations with a macrocyclic ligand (KryptofixR 222, composition C18H36N2O6) as a function of its concentration in 1 M Na2SO4 is studied by measuring the differential capacitance on a stationary Hg drop. Adsorption parameters of sodium kryptate are found using a regression analysis method and various versions of a model of two parallel capacitors complemented with the Frumkin adsorption isotherm. The differential capacitance curves, calculated on the basis of these, are compared with experimental data. The difference in model versions that most adequately describe the adsorption data, established for systems in 0.1 and 1 M Na2SO4, is explained by the influence of the supporting electrolyte on the adsorption layer structure. Conclusions are made on the absence in the system under study of the salting-out from the bulk solution and on a change in the properties of an adsorption layer of sodium kryptate in the region of potentials of the anodic adsorption–desorption peak following expansion of the adsorption region.  相似文献   

18.
A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments.  相似文献   

19.
Electrochemical behavior of electrodes based on activated carbon is studied by recording voltammetric curves and using the impedance method. A quantitative relation between hydrophobic and hydrophilic pores is established. Hydrophilization of activated carbon is performed. The occurrence of a reversible surface reaction is discovered in the region of negative potentials, where it was not observed earlier. A possible mechanism for the reaction is proposed and its kinetic parameters are found. The existence of surface compounds stable only in electrolyte (H2SO4) is established. A dramatic drop of the EDL capacitance at negative potentials is discovered.  相似文献   

20.
电解液离子与炭电极双电层电容的关系   总被引:3,自引:0,他引:3  
以酚醛树脂基纳米孔玻态炭(NPGC)为电极, 通过微分电容伏安曲线的测试, 研究了水相体系电解液离子与多孔炭电极双电层电容的关系. 结果表明, 稀溶液中, 多孔炭电极的微分电容曲线在零电荷点(PZC)处呈现凹点, 电容降低, 双电层电容受扩散层的影响显著;若孔径小, 离子内扩散阻力大, 电容下降更为迅速, 扩散层对双电层电容的影响增大. 而增大炭材料的孔径或电解液浓度, 可明显减弱甚至消除扩散层对电容的影响. 炭电极的单位面积微分电容高, 仅表明孔表面利用率高, 如欲获得高的电容量, 还要有大的比表面积. 离子水化对炭电极的电容产生不利影响, 选用大离子和增大炭材料的孔径, 可有效降低离子水化对炭电极电容性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号