首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The synthesis of silica‐based yolk–shell nanospheres confined with ultrasmall platinum nanoparticles (Pt NPs) stabilized with poly(amidoamine), in which the interaction strength between Pt NPs and the support could be facilely tuned, is reported. By ingenious utilization of silica cores with different surface wettability (hydrophilic vs. ‐phobic) as the adsorbent, Pt NPs could be confined in different locations of the yolk–shell nanoreactor (core vs. hollow shell), and thus, exhibit different interaction strengths with the nanoreactor (strong vs. weak). It is interesting to find that the adsorbed Pt NPs are released from the core to the hollow interiors of the yolk–shell nanospheres when a superhydrophobic inner core material (SiO2?Ph) is employed, which results in the preparation of an immobilized catalyst (Pt@SiO2?Ph); this possesses the weakest interaction strength with the support and shows the highest catalytic activity (88 500 and 7080 h?1 for the hydrogenation of cyclohexene and nitrobenzene, respectively), due to its unaffected freedom of Pt NPs for retention of the intrinsic properties.  相似文献   

2.
《中国化学快报》2023,34(6):107957
Herein, an intense electrochemiluminescence (ECL) was achieved based on Pt hollow nanospheres/rubrene nanoleaves (Pt HNSs/Rub NLs) without the addition of any coreactant, which was employed for ultrasensitive detection of carcinoembryonic antigen (CEA) coupled with an M-shaped DNA walker (M-DNA walker) as signal switch. Specifically, in comparison with platinum nanoparticles (Pt NPs), Pt HNSs revealed excellent catalytic performance and pore confinement-enhanced ECL, which could significantly amplify ECL intensity of Rub NLs/dissolved O2 (DO) binary system. Then, the tracks and M-DNA walker were confined on the Pt HNSs simultaneously to promote the reaction efficiency, whose M-structure boosted the interaction sites between walking strands and tracks and reduced the rigidity of their recognition. Once the CEA approached the sensing interface, the M-DNA walker was activated based on highly specific aptamer recognition to recover ECL intensity with the assistance of exonuclease Ⅲ (Exo Ⅲ). As proof of concept, the “on-off-on” switch aptasensor was constructed for CEA detection with a low detection limit of 0.20 fg/mL. The principle of the constructed ECL aptasensor also enables a universal platform for sensitive detection of other tumor markers.  相似文献   

3.
One plausible approach to endow aerogels with specific properties while preserving their other attributes is to fine‐tune the building blocks. However, the preparation of metallic aerogels with designated properties, for example catalytically beneficial morphologies and transition‐metal doping, still remains a challenge. Here, we report on the first aerogel electrocatalyst composed entirely of alloyed PdNi hollow nanospheres (HNSs) with controllable chemical composition and shell thickness. The combination of transition‐metal doping, hollow building blocks, and the three‐dimensional network structure make the PdNi HNS aerogels promising electrocatalysts for ethanol oxidation. The mass activity of the Pd83Ni17 HNS aerogel is 5.6‐fold higher than that of the commercial Pd/C catalyst. This work expands the exploitation of the electrocatalysis properties of aerogels through the morphology and composition control of its building blocks.  相似文献   

4.
Hollow‐structured nanomaterials with fluorescent properties are extremely attractive for image‐guided cancer therapy. In this paper, sub‐100 nm and hydrophilic NaYF4 upconversion (UC) hollow nanospheres (HNSs) with multicolor UC luminescence and drug‐delivery properties were successfully prepared by a facile one‐pot template‐free hydrothermal route using polyetherimide (PEI) polymer as the stabilizing agent. XRD, SEM, TEM, and N2‐adsorption/desorption were used to characterize the as‐obtained products. The growth mechanism of the HNSs has been systematically investigated on the basis of the Ostwald ripening. Under 980 nm excitation, UC emissions of HNSs can be tuned by a simple change of the concentration or combination of various upconverters. As a result, the PEI‐coated HNSs could be used as efficient probes for in vitro upconversion luminescence (UCL) cell imaging. Furthermore, a doxorubicin storage/release behavior and cancer‐cell‐killing ability investigation reveal that the product has the potential to be a drug carrier for cancer therapy.  相似文献   

5.
Designing and constructing nano‐architectures with abundant reactive atoms exposed on the surface and widely open pore interiors is an effective strategy for highly efficient utilization of Pt‐based catalysts. Herein, we report a facile method to synthesize tri‐metallic PtPdIr mesoporous hollow nanospheres (PtPdIr MHNSs) by selective chemical removal of sacrificial metallic cores from pre‐constructed Pd@PtIr mesoporous nanospheres (Pd@PtIr MNSs). The unique nano‐architectures, with mesoporous shells interconnected into the interior hollow cavities and the synergistic electronic effect from tri‐metallic PtPdIr composition, enable the as‐synthesized PtPdIr MHNSs to be efficient bifunctional electrocatalysts for catalyzing both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR).  相似文献   

6.
Robust nitrogen‐enriched Fe3O4@carbon nanospheres have been fabricated as a catalyst scaffold for Pt nanoparticles. In this work, core–shell Fe3O4@3‐aminophenol/formaldehyde (APF) nanocomposites were first synthesized by a simple hydrothermal method, and subsequently carbonized to Fe3O4@N‐Carbon nanospheres for in situ growth of Pt nanocrystals. Abundant amine groups were distributed uniformly onto Fe3O4@N‐Carbon nanospheres, which not only improved the dispersity and stability of the Pt nanocrystals, but also endowed the Pt‐based catalysts with good compatibility in organic solvents. The dense three‐dimensional cross‐linked carbon shell protects the Fe3O4 cores against damage from harsh chemical environments, even in aqueous HCl (up to 1.0 m ) or NaOH (up to 1.0 m ) solutions under ultrasonication for 24 hours, which indicates that it can be used as a robust catalyst scaffold. In the reduction of nitrobenzene compounds, the Fe3O4@N‐Carbon@Pt nanocatalysts show outstanding catalytic activity, stability, and recoverability.  相似文献   

7.
One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM‐FCs). The anion exchange membrane fuel cell (AEM‐FC) has long been proposed as a solution as non‐Pt metals may be employed. Despite this, few examples of Pt‐free AEM‐FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt‐free AEM‐FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt‐free AEM‐FC that employs a mixed carbon‐CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM‐FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm?2.  相似文献   

8.
9.
An effective method for loading Pt nanoparticles on monodispersed hollow carbon nanospheres by one-step pyrolysis of polystyrene spheres (PS) adsorbed with platinum (IV) ions was developed. The polystyrene spheres were firstly enwrapped with a layer of sucrose and cetyltrimethyl ammonium bromide (CTAB) micelles. Adsorption of platinum (IV) ions onto the polystyrene spheres was carried out via electrostatic interaction between the negatively charged platinum salt and the positively charged amino group in the CTAB. Pyrolysis of the PS-Pt (IV) precursors at 600 °C under nitrogen atmosphere resulted in the simultaneous decomposition of the sucrose to carbon and the adsorbed platinum complex to metallic Pt. During this process the polystyrene spheres was removed and hollow sphere of PtC formed. Nanocomposites of hollow carbon nanospheres with different platinum loading were synthesized and their electrocatalytic activity was evaluated using methanol as a model molecule. Results showed that the as-prepared hollow carbon nanospheres supported platinum catalysts have high electrocatalytic activity and long-term stability towards the oxidation of methanol. The present method is promising for the fabrication of carbon supported platinum catalysts for the direct methanol fuel cell.  相似文献   

10.
Tailoring the morphology and composition of platinum‐based electrocatalysts is of significant importance for the development of highly efficient direct methanol fuel cells. Herein, we report a dual‐templating method for the design of hollow PtPd nanorods with mesoporous shells (mPtPd HNRs). We found that F127 micelles favored the formation of mesoporous structures and that SiO2 nanorods served as a hard template for the creation of cavities. The well‐developed mesopores, hollow structures, and bimetallic composition of the mPtPd HNRs afforded a sufficient number of active sites to facilitate the electrochemical oxidation of methanol, thereby leading to enhanced activity and stability. This strategy allowed for the reliable preparation of mesoporous hollow platinum‐based electrocatalysts with desired compositions and morphologies for catalytic applications.  相似文献   

11.
The anodic reaction in direct ethanol fuel cells (DEFCs), ethanol oxidation reaction (EOR) faces challenges, such as incomplete electrooxidation of ethanol and high cost of the most efficient electrocatalyst, Pt in acidic media at low temperature. In this study, core‐shell electrocatalysts with an Au core and Pt‐based shell (Au@Pt) are developed. The Au core size and Pt shell thickness play an important role in the EOR activity. The Au size of 2.8 nm and one layer of Pt provide the most optimized performance, having 6 times higher peak current density in contrast to commercial Pt/C. SnO2 as a support also enhances the EOR activity of Au@Pt by 1.73 times. Further modifying the Pt shell with Ru atoms achieve the highest EOR current density that is 15 and 2.5 times of Pt/C and Au@Pt. Our results suggest the importance of surface modification in rational design of advanced electrocatalysts.  相似文献   

12.
Maximizing the platinum utilization in electrocatalysts toward oxygen reduction reaction (ORR) is very desirable for large‐scale sustainable application of Pt in energy systems. A cost‐effective carbon‐supported carbon‐defect‐anchored platinum single‐atom electrocatalysts (Pt1/C) with remarkable ORR performance is reported. An acidic H2/O2 single cell with Pt1/C as cathode delivers a maximum power density of 520 mW cm?2 at 80 °C, corresponding to a superhigh platinum utilization of 0.09 gPt kW?1. Further physical characterization and density functional theory computations reveal that single Pt atoms anchored stably by four carbon atoms in carbon divacancies (Pt‐C4) are the main active centers for the observed high ORR performance.  相似文献   

13.
本文以约120nm的α-Se球为模板,抗坏血酸为还原剂,H2PtCl6为前驱体,通过改变氯铂酸的用量可控合成了不同壳厚的纳米铂空球(Pthollow)及其修饰玻碳(GC)电极(Pthollow/GC);采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、能量色散X射线(EDX)谱、X射线衍射(X-ray diffraction,XRD)谱和选区电子衍射(SAED)图等表征其形貌、组成与结构;以甲酸为探针分子,采用循环伏安和计时电流法研究了甲酸在Pthollow/GC电极上的电催化氧化行为.结果表明,所制备的Pthollow分散性好、粒径比较均匀,其多孔球壳是由多维多级的铂原子团簇所构建,呈现多晶铂的结构与性质;当RPt/Se=1.2时,所合成Pthollow。对甲酸的电催化氧化活性最高,且明显优于电沉积铂(Ptnano)修饰GC电极(Ptnano/GC),为直接甲酸燃料电池(DFAFC)阳极材料的优化制备提供了一定的实验与理论依据,有潜在的应用推广价值.  相似文献   

14.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

15.
We prepared core–shell polymer–silsesquioxane hybrid microcapsules from cage‐like methacryloxypropyl silsesquioxanes (CMSQs) and styrene (St). The presence of CMSQ can moderately reduce the interfacial tension between St and water and help to emulsify the monomer prior to polymerization. Dynamic light scattering (DLS) and TEM analysis demonstrated that uniform core–shell latex particles were achieved. The polymer latex particles were subsequently transformed into well‐defined hollow nanospheres by removing the polystyrene (PS) core with 1:1 ethanol/cyclohexane. High‐resolution TEM and nitrogen adsorption–desorption analysis showed that the final nanospheres possessed hollow cavities and had porous shells; the pore size was approximately 2–3 nm. The nanospheres exhibited large surface areas (up to 486 m2 g?1) and preferential adsorption, and they demonstrated the highest reported methylene blue adsorption capacity (95.1 mg g?1). Moreover, the uniform distribution of the methacryloyl moiety on the hollow nanospheres endowed them with more potential properties. These results could provide a new benchmark for preparing hollow microspheres by a facile one‐step template‐free method for various applications.  相似文献   

16.
It is of great importance to develop highly e?cient and stable Pt‐free catalysts for electrochemical hydrogen generation from water electrolysis. Here, monodisperse 7.5 nm copper‐doped ruthenium hollow nanoparticles (NPs) with abundant defects and amorphous/crystalline hetero‐phases were prepared and employed as efficient hydrogen evolution electrocatalysts in alkaline electrolyte. Specifically, these NPs only require a low overpotential of 25 mV to achieve a current density of 10 mA cm?2 in 1.0 M KOH and show acceptable stability after 2000 potential cycles, which represents one of the best Ru‐based electrocatalysts for hydrogen evolution. Mechanism analysis indicates that Cu incorporation can modify the electronic structure of Ru shell, thereby optimizing the energy barrier for water adsorption and dissociation processes or H adsorption/desorption. Cu doping paired with the defect‐rich and highly open hollow structure of the NPs greatly enhances hydrogen evolution activity.  相似文献   

17.
The inner‐surface functionalization of hollow silica spheres has rarely been reported and is still a challenging topic. Herein, we report a deacetalization–Henry cascade reaction catalyzed by dual‐functionalized mesoporous silica hollow nanospheres with basic amine groups (?NH2) on the internal shell and carboxylic acid groups (?COOH) on the external shell. The selective functionalization has been realized by a combination of “step‐by‐step post‐grafting” and “cationic surfactant‐assisted selective etching” strategy. Compared to unisolated catalyst, the selectively isolated acidic and basic dual catalyst provides excellent catalytic performance for the deacetalization–Henry cascade reaction in terms of both activity (>99 %) and selectivity (95 %).  相似文献   

18.
An elegant general synthesis route for the preparation of two coordinate palladium(0) and platinum(0) complexes was developed by reacting commercially available tetrakis(triphenylphosphine)palladium/platinum with π‐accepting cyclic alkyl(amino) carbenes (cAACs). The complexes are characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. The palladium complexes exhibit sharp color changes (crystallochromism) from dark maroon to bright green if the C‐Pd‐C bond angle is sharpened by approximately 6°, which is chemically feasible by elimination of one lattice THF solvent molecule. The analogous dark orange‐colored platinum complexes are more rigid and thus do not show this phenomenon. Additionally, [(cAAC)2Pd/Pt] complexes can be quasi‐reversibly oxidized to their corresponding [(cAAC)2Pd/Pt]+ cations, as evidenced by cyclic voltammetry measurements. The bonding and stability are studied by theoretical calculations.  相似文献   

19.
The hydrogen storage properties of metal nanoparticles change with particle size. For example, in a palladium–hydrogen system, the hydrogen solubility and equilibrium pressure for the formation of palladium hydride decrease with a decrease in the particle size, whereas hydrogen solubility in nanoparticles of platinum, in which hydrogen cannot be stored in the bulk state, increases. Systematic studies of hydrogen storage in Pd and Pt nanoparticles have clarified the origins of these nanosize effects. We found a novel hydrogen absorption site in the hetero‐interface that forms between the Pd core and Pt shell of the Pd/Pt core/shell‐type bimetallic nanoparticles. It is proposed that the potential formed in the hetero‐interface stabilizes hydrogen atoms rather than interstitials in the Pd core and Pt shells. These results suggest that metal nanoparticles a few nanometers in size can act as a new type of hydrogen storage medium. Based on knowledge of the nanosize effects, we discuss how hydrogen storage media can be designed for improvement of the conditions of hydrogen storage.  相似文献   

20.
A facile strategy was reported to fabricate a novel Pt‐based metal oxide double‐shelled hollow nanospheres (MDSHs), which avoided the traditional tedious procedures. It was attractive that the formation mechanism of DSHs involved redeposition of etch‐released silica species and self‐assembly of metal oxide units. To verify the successful synthesis and structure features of Pt‐LCDSHs catalyst, the as‐prepared samples were characterized by several techniques, such as SEM, N2 adsorption–desorption isotherm analysis, TEM, EDX, XRD and XPS. Results indicated that all of MDSHs possessed double‐shelled structures with both the inner and outer shells composing of metal oxide units. Interestingly, the metal oxide of the DHSs could offer abundant active points for Pt NPs and the space between the double shells also could be filled with Pt NPs. What's more, compared with the pure samples, the Pt‐embedded La2O3‐CeO2‐DSHs exhibited the highest catalytic performance (6.58 × 10?3 min?1) and good reusability with a conversion of 94% even after eight cycles, which were evaluated by means of the reduction of 4‐nitrophenol monitored by UV–vis spectra. Finally, a possible reaction mechanism for the reduction reaction on Pt‐based La2O3‐CeO2‐DSHs was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号