首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexakis(pentafluorophenyl)‐substituted meso–meso‐linked ZnII–diporphyrin ( 9 ), which was prepared by the acid‐catalyzed cross‐condensation of 1,1,2,2‐tetrapyrroethane ( 5 ) with dipyrromethane dicarbinol ( 6 ), was converted into meso–meso,β‐β,β‐β triply linked ZnII–diporphyrin 3 by oxidation with 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) and Sc(OTf)3. Beside the red‐shifted absorption spectrum and split first oxidation potential that are common to the triply‐linked ZnII–diporphyrins, diporphyrin 3 exhibited considerably improved chemical stability owing to a lowered HOMO and good solubility in common organic solvents. The two‐photon absorption (TPA) cross‐section and S1‐state lifetime of compound 3 were 1700 GM and 3.3 ps, respectively.  相似文献   

2.
meso‐Tetraarylporphyrinato complexes 1a – g (ZnII, CuII, and NiII) bearing one or two nitro‐substituted aryl moieties react with 1,1,1‐trimethylhydrazinium iodide in the presence of tBuOK in THF at 0–5° or in the presence of KOH in DMSO at 60–70° according to a nucleophilic substitution of an H‐atom, thus affording porphyrins 2a – g and 3f , g with amino‐functionalized meso‐positioned aryl substituents in yields up to 73% (Scheme 1 and Table). The products obtained are attractive intermediates for further derivatization of porphyrins and may be of potential use as sensitizers in photodynamic cancer therapy.  相似文献   

3.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   

4.
A2B‐type B‐methoxy subporphyrins 3 a – g and B‐phenyl subporphyrins 7 a – c , e , g bearing meso‐(2‐substituted)aryl substituents are synthesized, and their rotational dynamics are examined through variable‐temperature (VT) 1H NMR spectroscopy. In these subporphyrins, the rotation of meso‐aryl substituents is hindered by a rationally installed 2‐substituent. The rotational barriers determined are considerably smaller than those reported previously for porphyrins. Comparison of the rotation activation parameters reveals a variable contribution of ΔH and ΔS in ΔG. 2‐Methyl and 2‐ethyl groups of the meso‐aryl substituents in subporphyrins 3 e , 3 f , and 7 e induce larger rotational barriers than 2‐alkoxyl substituents. The rotational barriers of 3 g and 7 g are reduced by the presence of the 4‐dibenzylamino group owing to its ability to stabilize the coplanar rotation transition state electronically. The smaller rotational barriers found for B‐phenyl subporphyrins than for B‐methoxy subporphyrins indicate a negligible contribution of SN1‐type heterolysis in the rotation of meso‐aryl substituents.  相似文献   

5.
In the title complex, [Zn(C12H6O4)(H2O)]n, a ZnII polymer based on naphthalene‐1,8‐dicarboxylate (1,8‐nap), the ZnII atoms adopt an elongated octahedral coordination geometry. A zigzag chain is formed by μ2‐aqua ligands and μ2‐carboxylate groups of the 1,8‐nap ligands. Adjacent parallel chains are further linked by 1,8‐nap ligands, forming a twisted two‐dimensional layer structure along the (100) plane.  相似文献   

6.
The crystal structure of the title compound, [CoCl(C18H37N4O2){ZnCl3}], has been determined by X‐ray diffraction.Cmeso‐5,5,7,12,12,14‐Hexa­methyl‐1,4,8,11‐tetra­aza­cyclotetradecane‐N‐acetate acts as a bridging ligand to coodinate with CoIII and ZnII ions. The CoIII ion is six‐coordinate in a nearly octahedral environment provided by one Cl atom, four N atoms of the bridging ligand, and one O atom. The ZnII ion is four‐coordinate in a distorted tetrahedral environment completed by three Cl atoms and an O atom of the bridging ligand.  相似文献   

7.
5,20‐Bis(ethoxycarbonyl)‐[28]hexaphyrin was synthesized by acid catalyzed cross‐condensation of meso‐diaryl‐substituted tripyrrane and ethyl 2‐oxoacetate followed by subsequent oxidation. This hexaphyrin was found to be a stable 28π‐antiaromatic compound with a dumbbell‐like conformation. Upon oxidization with PbO2, this [28]hexaphyrin was converted into an aromatic [26]hexaphyrin with a rectangular shape bearing two ester groups at the edge side. The [28]hexaphyrin can incorporate two NiII or CuII metals by using the ester carbonyl groups and three pyrrolic nitrogen atoms to give bis‐NiII and bis‐CuII complexes with essentially the same dumbbell‐like structure. The antiaromatic properties of the [28]hexaphyrin and its metal complexes have been well characterized.  相似文献   

8.
The AgI-promoted oxidative meso-meso coupling reaction of 5,15-diaryl ZnII-porphyrins is advantageous in light of its high regioselectivity as well as its easy extension to large porphyrin arrays. Linear meso-meso linked porphyrin 128-mer and three-dimensionally arranged grid porphyrin 48-mer were isolated in a discrete form by repetitive oxidation reaction and subsequent gel-permeation chromatography (GPC)-HPLC. 5,15-Diaryl CuII-, NiII-, and PdII-porphyrins were converted to meso- doubly-linked diporphyrins by oxidation with(p-BrC6H4)3NSbCl6. End-aryl-capped meso-meso linked CuII-, NiII-, and PdII- diporphyrins were converted to completely fused meso-meso - -triply-linked diporphyrins through the oxidative ring closure (ODRC) reaction with (p-BrC6H4)3NSbCl6. Finally, we found that ScIII-catalyzed oxidation with DDQ gave a very efficient ODRC reaction and hence allowed the synthesis of triply-linked oligoporphyrins up to 12-mer.  相似文献   

9.
A coiled structure of meso‐pentafluorophenyl‐substituted [62]tetradecaphyrin 1 was revealed by X‐ray structural analysis. Synthetic protocols were devised to form mono‐ and bis‐ZnII complexes, 1 Zn and 1 Zn2 , selectively. The former displayed a trigonal‐bipyramidal pentacoordinated ZnII ion as a rare case and a cyclic voltammogram exhibiting eleven reversible redox waves. The latter showed a Ci‐symmetric structure with modest Hückel aromaticity owing to a 62 π‐electronic circuit as the largest aromatic molecule to date.  相似文献   

10.
A facile and fast approach, based on microwave‐enhanced Sonogashira coupling, has been employed to obtain in good yields both mono‐ and, for the first time, disubstituted push–pull ZnII porphyrinates bearing a variety of ethynylphenyl moieties at the β‐pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β‐mono‐ or disubstituted ZnII porphyrinates and meso‐disubstituted push–pull ZnII porphyrinates. We have obtained evidence that, although the HOMO–LUMO energy gap of the meso‐substituted push–pull dyes is lower, so that charge transfer along the push–pull system therein is easier, the β‐mono‐ or disubstituted push–pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β‐monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon‐to‐current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350–650 nm). In contrast, meso‐substitution produces IPCE spectra with two less intense and well‐separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge‐transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β‐monosubstituted ZnII porphyrinates extremely promising sensitizers for use in DSSCs.  相似文献   

11.
A direct ortho‐Csp2‐H acylmethylation of 2‐aryl‐2,3‐dihydrophthalazine‐1,4‐diones with α‐carbonyl sulfoxonium ylides is achieved through a RuII‐catalyzed C?H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl‐, heteroaryl‐, and alkyl‐substituted α‐carbonyl sulfoxonium ylides. Thereafter, 2‐(ortho‐acylmethylaryl)‐2,3‐dihydrophthalazine‐1,4‐diones were used as potential starting materials for the expeditious synthesis of 6‐arylphthalazino[2,3‐a]cinnoline‐8,13‐diones and 5‐acyl‐5,6‐dihydrophthalazino[2,3‐a]cinnoline‐8,13‐diones under Lawesson's reagent and BF3?OEt2 mediated conditions, respectively. Of these, the BF3?OEt2‐mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C?C and C?N bond formations.  相似文献   

12.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

13.
Porphyrins are valuable constituents in optoelectronic, catalytic, and other applications, yet control of intermolecular π–π stacking is invariably essential to attain the desired properties. Superstructures built onto the porphyrin, often via meso‐aryl groups, can afford facial encumbrance that suppresses π–π stacking, although some molecular designs have provided insufficient facial coverage and many have entailed cumbersome syntheses. In this study, a copper(II) porphyrin bearing four meso substituents, namely, {10,20‐bis[2,6‐bis(octyloxy)phenyl]‐5,15‐dibromoporphinato}copper(II), [Cu(C64H82Br2N4O4)], was prepared by metalation of the corresponding free‐base porphyrin and was characterized by single‐crystal X‐ray diffraction. The crystal structure reveals a dihedral angle of 111.1 (2)° for the plane of the meso‐aryl group relative to the plane of the porphyrin, with both aryl groups tilted in the same direction. Each of the four octyloxy groups exhibits a gauche conformation for the –OCH2CH2– unit but is extended with four or five anti (–CH2CH2–/H) conformations thereafter, causing each octyl group to span the dimension of the macrocycle. In a global frame of reference where the two Br atoms define the north/south poles and the two aryl groups are at antipodes on the equator, two octyl groups of one aryl unit project over the northern hemisphere (covering pyrroles A and B), whereas those of the other aryl unit project over the southern hemisphere (covering pyrroles C and D). Together, the four octyl groups ensheath the two faces of the porphyrin in a self‐wrapped assembly. The closest approach of the Cu atom to an octyl methylene C atom (position 6) is 3.5817 (18) Å, the mean separations of neighboring porphyrin planes are 8.059 (4) and 4.693 (8) Å along the a and c axes, respectively, and the center‐to‐center distances between the Cu atoms of neighboring porphyrins are 10.2725 (4), 12.2540 (6), and 12.7472 (6) Å along the a, b, and c axes, respectively. The Hirshfeld surface analysis and two‐dimensional (2D) fingerprint plots provide information concerning contact interactions in the supramolecular assembly of the solid crystal.  相似文献   

14.
Homo‐ and heteronuclear meso,meso‐(E)‐ethene‐1,2‐diyl‐linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15‐triphenylporphyrin (TriPP) on both ends of the ethene‐1,2‐diyl bridge M210 (M2=H2/Ni, Ni2, Ni/Zn, H4, H2Zn, Zn2) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphyrinato‐nickel(II) on one end and H2, Ni, and ZnTriPP on the other ( M211 ), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni2 bis(TriPP) complex Ni210 , single crystal X‐ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of NiII porphyrins, and the (E)‐C2H2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H410 and H2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas‐phase optimized geometry of Ni210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV.  相似文献   

15.
Stable meta‐ and para‐phenylene bridged porphyrin meso‐oxy radical dimers and their NiII and ZnII complexes were synthesized. All the dimers exhibited optical and electrochemical properties similar to the corresponding porphyrin meso‐oxy radical monomers, indicating small electronic interaction between the two spins. Intramolecular spin‐spin interaction through the π‐spacer was determined to be J/kB=?15.9 K for m‐phenylene bridged ZnII porphyrin dimer. The observed weak antiferromagnetic interaction has been attributed to less effective conjugation between the porphyrin radical and linking π‐spacer due to large dihedral angle. In the case of ZnII complexes, both para‐ and meta‐phenylene bridged dimers formed 1D‐chain in solutions and in the solid states through Zn‐O coordination.  相似文献   

16.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

17.
5,10,15‐Tris(pentafluorophenyl)tetrapyrromethane was efficiently prepared through a route involving stepwise diaroylation of 5‐pentafluorophenyldipyrromethane. A2B6‐type [36]octaphyrins were prepared by the cross condensation of the tetrapyrromethane with aryl aldehydes in moderate yields. A2B6‐type [36]octaphyrins bearing 2,4,6‐trifluorophenyl, 2,6‐dichlorophenyl, and phenyl substituents underwent CuII‐metalation‐induced fragmentation to give two molecules of AB3‐type CuII porphyrins. A2B6‐type [36]octaphyrin bearing 3‐thienyl substituents underwent thermal N‐thienyl fusion reactions to provide a modestly aromatic [38]octaphyrin, which, upon treatment with MnO2, underwent further N‐thienyl fusion and subsequent oxidation to give a nonaromatic doubly N‐thienyl fused [36]octaphyrin.  相似文献   

18.
The synthesis is reported of the tricarboxylic acid 3‐(3,5‐dicarboxybenzyloxy)benzoic acid (H3L) and the product of its reaction under solvothermal conditions with ZnII cations, namely poly[[μ6‐3‐(3,5‐dicarboxylatobenzyloxy)benzoato](dimethylformamide)‐μ3‐hydroxido‐dizinc(II)], [Zn2(C16H9O7)(OH)(C3H7NO)]n, the formation of which is associated with complete deprotonation of H3L. Its crystal structure consists of a single‐framework coordination polymer of the organic L3− ligand with ZnII cations in a 1:2 ratio, with additional hydroxide and dimethylformamide (DMF) ligands coordinated to the ZnII centres. The ZnII cations are characterized by coordination numbers of 5 and 6, being bridged to each other by hydroxide ligands. In the polymeric framework, the carboxylate‐ and hydroxy‐bridged ZnII cations are arranged in coordination‐tessellated columns, which propagate along the a axis of the crystal structure, and each L3− ligand links to seven different ZnII centres via Zn—O bonds of two different columns. The coordination framework, composed of [Zn2(L)(OH)(DMF)]n units, forms an open architecture, the channel voids within it being filled by the zinc‐coordinating DMF ligands. This report provides the first structural evidence for the formation of coordination polymers with H3L via multiple metal–ligand bonds through its carboxylate groups.<!?tpb=21.5pt>  相似文献   

19.
The two title crystalline compounds, viz.meso‐bis{η5‐1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienyl}iron(II), [Fe(C12H20NSi)2], (II), and meso‐bis{η5‐1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienyl}cobalt(II), [Co(C12H20NSi)2], (III), were obtained by the reaction of lithium 1‐[1‐(dimethylamino)ethenyl]‐3‐(trimethylsilyl)cyclopentadienide with FeCl2 and CoCl2, respectively. For (II), the trimethylsilyl‐ and dimethylaminoethenyl‐substituted cyclopentadienyl (Cp) rings present a nearly eclipsed conformation, and the two pairs of trimethylsilyl and dimethylaminoethenyl substituents on the Cp rings are arranged in an interlocked fashion. In the case of (III), the same substituted Cp rings are perfectly staggered leading to a crystallographically centrosymmetric molecular structure, and the two trimethylsilyl and two dimethylaminoethenyl substituents are oriented in opposite directions, respectively, with the trimethylsilyl group of one Cp ring and the dimethylaminoethenyl group of the other Cp ring arranged more closely than in (II).  相似文献   

20.
We report the synthesis of the first‐ (G1) and second‐generation (G2) dendritic FeII porphyrins 1?Fe – 4?Fe (G1) and 6?Fe (G2) bearing distal H‐bond donors ideally positioned for stabilization of FeII? O2 adducts by H‐bonding (Fig. 1). A first approach towards the construction of these novel biomimetic systems failed unexpectedly: the Suzuki cross‐coupling between appropriately functionalized ZnII porphyrins and ortho‐ethynylated aryl derivatives, serving as anchors for the distal H‐bond donor moieties, was unsuccessful (Schemes 1, 3, and 5), presumably due to steric hindrance resulting from unfavorable coordination of the ethynyl residue to the Pd species in the catalytic cycle (Scheme 6). The target molecules were finally prepared by a route in which the ortho‐ethynylated meso‐aryl ring is introduced during porphyrin construction in a mixed condensation involving the two dipyrrylmethanes 33 and 34 , and aldehyde 36 (Schemes 7 and 8). Following attachment of the dendrons (Scheme 11), the distal H‐bond donors were introduced by Sonogashira cross‐coupling (Scheme 12), and subsequent metallation afforded the dendritic FeII porphyrins 1?Fe – 6?Fe . 1H‐NMR Spectroscopy proved the location of the H‐bond donor moiety atop the porphyrin surface, and X‐ray crystal‐structure analysis of model system 45 (Fig. 2) revealed that this moiety would not sterically interfere with gas binding. With 1,2‐dimethyl‐1H‐imidazole (DiMeIm) as ligand, the dendritic FeII porphyrins formed five‐coordinate high‐spin complexes (Figs. 3 and 4) and addition of CO led reversibly to the corresponding stable six‐coordinate gas complexes (Fig. 6). Oxygenation, however, did not result in defined FeII? O2 complexes as rapid decomposition to FeIII species took place immediately, even in the case of the G2 dendrimer 6?Fe (DiMeIm) (Fig. 7). In contrast, stable gas adducts are formed between dendritic CoII porphyrins and O2 in the presence of DiMeIm as axial ligand, as revealed by electron paramagnetic resonance (EPR). The possible stabilization of these complexes through H‐bonding involving the distal ligand is currently under investigation in multidimensional and multifrequency pulse EPR experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号