首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
New stibine and bismuthine substituted thienyl ring compounds, i.e. tris(3‐methyl‐2‐thienyl)stibine (1), tris(3‐methyl‐2‐thienyl)bismuthine (2), tris(3‐thienyl)stibine (3), tris(3‐thienyl)bismuthine (4) and tris(5‐chloro‐2‐thienyl)stibine (5), have been synthesized and characterized by IR, mass, 1H, 13C, COSY, and HETCOR NMR spectroscopy. The metal centres in all compounds are pyramidal, and molecules in the stibine compound (1) and bismuthine compound (2) associate via Sb···S or Bi···S interactions to form supramolecular chains. The cytotoxicity of compounds 1 and 5 was determined. For compound 5, 85% of carcinogenic cell growth inhibition (U, K and H) was observed. Compound 1 shows a significant selectivity (>80%) for carcinogenic cell growth (K and U) inhibition. Both the compounds are highly toxic for the growth of normal lymphocytes with ~95% lethality. Compound 1 is approximately 20 times more toxic than 5 against Artemia salina. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Miao  Qian  Yan  Xiaowei  Zhao  Kejian 《中国化学》2010,28(1):81-85
An anticancer active compound 1‐[(5‐bromo‐2‐thienyl)sulfonyl]‐5‐fluoro‐1,2,3,4‐tetrahydropyrimidine‐2,4‐dione ( 1 ) was synthesized by the modified Schotten‐Baumann reaction of 5‐fluorouracil with 5‐bromo‐2‐thienyl‐sulfonyl chloride and characterized by elemental analysis, IR, 1H and 13C NMR spectra. The single crystal X‐ray diffraction analysis shows that the title molecule forms a two dimensional sheet structure by three kinds of hydrogen bond interactions. Its thermal stability was studied by TGA technique. Based on inhibition ratio against cancer cell growth, compound 1 has obvious anticarcinogenic activity against HL‐60 and BEL‐7402 cancer cells.  相似文献   

3.
We have synthesized three new donor–acceptor‐type monomers to achieve soluble and processable low‐band gap polymers, 4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B4TB), 4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B3TB), and 4‐(3‐octyl‐2‐thienyl)‐7‐(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B34TB), by the Suzuki coupling reaction. Using B4TB and B3TB, two soluble high molecular weight regioregular head‐to‐head and tail‐to‐tail polymers poly[4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐ benzothiadiazole] (PB4TB) and poly[4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole] (PB3TB) were prepared via iron(III) chloride‐mediated oxidative polymerization. The structures of the polymers were confirmed by 1H and 13C NMR, and the molecular weights were determined by size exclusion chromatography. The optical properties (absorbance and fluorescence) of the monomers and polymers were studied and compared with unsubstituted analogues. The monomers and polymers bearing octyl substituents on the thiophene rings pointing away from the benzothiadiazole units (B4TB and PB4TB) possess a more planar structure, and their optical spectra appear redshifted as compared with those having the octyl chain nearer to the benzothiadiazole (B3TB and PB3TB). The optical band gaps of PB3BT (Eg = 2.01 eV) and PB4BT (Eg = 1.96 eV), however, are at much higher energy levels than that of the unsubstituted electrochemically polymerized PBTB material (Eg = 1.1–1.2 eV) as a result of steric effects of the octyl chains. The electrochemical properties of the monomers and polymers were examined using cyclic voltammetry and reflect the effect of alkyl substitution. B4TB and PB4TB were oxidized at a lower potential than B3TB and PB3TB, whereas their reduction potentials were less negative. The electrochemical band gap calculated from the onset of the reduction and oxidation process agreed with the optical band gap calculated from the absorption edges. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 251–261, 2002  相似文献   

4.
In this study, 4‐{2‐(2‐thienyl)ethoxy}phthalonitrile ( 3 ) and its tetra substituted peripherally metal‐free ( 4 ), lead (II) ( 5 ), magnesium (II) ( 6 ), and cobalt (II) ( 7 ) phthalocyanines were synthesized. The structural characterization of the obtained compounds was performed by a combination of FTIR, 1H‐NMR, UV–vis, and MALDI‐TOF techniques. The inhibitory properties of these compounds were determined using Ingkaninan's methods against cholinesterase enzymes. Compound ( 7 ) had the highest enzyme inhibitory effect toward AChE and BuChE enzymes with IC50 values of 23.71 ± 0.39 and 27.29 ± 0.22 μM, respectively. The enzyme kinetic study of compound ( 7 ) demonstrated noncompetitive AChE inhibition and uncompetitive BuChE inhibition. The Ki values of compound ( 7 ) against AChE and BuChE were found to 39.15 and 7.25 μM, respectively. In the tested compounds, ( 7 ) deserves further investigation for potential therapeutic candidates of Alzheimer's disease.  相似文献   

5.
The asymmetric unit of the racemic form of the title compound, C12H15NOS, contains four crystallographically independent molecules. The olefinic bond connecting the 2‐thienyl and 1‐azabicyclo[2.2.2]octan‐3‐ol moieties has Z geometry. Strong hydrogen bonding occurs in a directed co‐operative O—H...O—H...O—H...O—H R44(8) pattern that influences the conformation of the molecules. Co‐operative C—H...π interactions between thienyl rings are also present. The average dihedral angle between adjacent thienyl rings is 87.09 (4)°.  相似文献   

6.
Syntheses and structures are described for some alkylidene‐substituted dihydrooxazolones and dihydroimidazoles derived from simple acylglycines. A second, triclinic, polymorph of 4‐benzylidene‐2‐(4‐methylphenyl)‐1,3‐oxazol‐5(4H)‐one, C17H13NO2, (I), has been identified and the structure of 2‐methyl‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one, C9H7NO2S, (II), has been rerefined taking into account the orientational disorder of the thienyl group in each of the two independent molecules. The reactions of phenylhydrazine with 2‐phenyl‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one or 2‐(4‐methylphenyl)‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one yield, respectively, 3‐anilino‐2‐phenyl‐5‐[(thiophen‐2‐yl)methylidene]‐3,5‐dihydro‐4H‐imidazol‐4‐one, C10H15N3OS, (III), and 3‐anilino‐2‐(4‐methylphenyl)‐5‐[(thiophen‐2‐yl)methylidene]‐3,5‐dihydro‐4H‐imidazol‐4‐one, C21H17N3OS, (IV), which both exhibit orientational disorder in their thienyl groups. The reactions of 2‐phenyl‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one with hydrazine hydrate or with water yield, respectively, N‐[3‐hydrazinyl‐3‐oxo‐1‐(thiophen‐2‐yl)prop‐1‐en‐2‐yl]benzamide and 2‐(benzoylamino)‐3‐(thiophen‐2‐yl)prop‐2‐enoic acid, which in turn react, respectively, with thiophene‐2‐carbaldehyde to form 2‐phenyl‐5‐[(thiophen‐2‐yl)methylidene]‐3‐{[(E)‐(thiophen‐2‐yl)methylidene]amino}‐3,5‐dihydro‐4H‐imidazol‐4‐one, C19H13N3OS2, (V), which exhibits orientational disorder in only one of its thienyl groups, and with methanol to give methyl (2Z)‐2‐(benzoylamino)‐3‐(thiophen‐2‐yl)prop‐2‐enoate, C15H13NO3S, (VI). There are no direction‐specific intermolecular interactions in the crystal structure of the triclinic polymorph of (I), but the molecules of (II) are linked by two independent C—H...O hydrogen bonds to form C22(14) chains. Compounds (III) and (IV) both form centrosymmetric R22(10) dimers built from N—H...O hydrogen bonds, while compound (V) forms a centrosymmetric R22(10) dimer built from C—H...O hydrogen bonds. In the structure of compound (VI), a combination of N—H...O and C—H...π(arene) hydrogen bonds links the molecules into sheets. Comparisons are made with some similar compounds.  相似文献   

7.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   

8.
A phenylenevinylene‐thiophene‐phenyleneethynylene copolymer, poly{[1′,4′‐bis‐(thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene‐alt‐1,4‐dioctyloxyl‐phenyleneethynylene}(PTPPV‐ PPE), was synthesized by the Sonogashira Pd‐catalyzed cross‐coupling reaction. The copolymer possesses higher thermal decomposition temperature (Td = 382°C) compared with poly{[1′,4′‐bis‐ (thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene} (PTPPV). The absorption and photoluminescence (PL) peaks of PTPPV‐PPE solution and solid film locate in between those of the homopolymers of PTPPV and poly(1,4‐dioctyloxyl‐phenyleneethynylene) (PPE), and closer to that of PTPPV. Photovoltaic cell was fabricated based on the blend of PTPPV‐PPE and PCBM with a weight ratio of 1:1. The primary result shows an open circuit voltage (Voc) of 0.72 V which is higher than that of the PTPPV (0.67 V), and a power conversion efficiency (PCE) of 0.3% under the illumination of AM1.5, 100 mW/cm2 which is much better than that of PPEs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

10.
(Z)‐3‐(1H‐Indol‐3‐yl)‐2‐(3‐thienyl)­acrylo­nitrile, C15H10N2S, (I), and (Z)‐3‐[1‐(4‐tert‐butyl­benzyl)‐1H‐indol‐3‐yl]‐2‐(3‐thienyl)­acrylo­nitrile, C26H24N2S, (II), were prepared by base‐catalyzed reactions of the corresponding indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. 1H/13C NMR spectral data and X‐ray crystal structures of compounds (I) and (II) are presented. The olefinic bond connecting the indole and thio­phene moieties has Z geometry in both cases, and the mol­ecules crystallize in space groups P21/c and C2/c for (I) and (II), respectively. Slight thienyl ring‐flip disorder (ca 5.6%) was observed and modeled for (I).  相似文献   

11.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
In this paper the reaction of 2‐(2′‐thienylmethylene)‐3,4‐dihydronaphthalen‐2(1H)‐one ( 1 ) with cyanothioacetamide gave a mixture of 3‐cyano‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]quinolin‐2(1H)‐thione ( 2 ) and the related disulfide 3 . Compound 2 was reacted with some halo compounds namely; ethyl chloroacetate, chloroacetamide, chloro(N‐(p‐chlorophenyl))acetamide, N1‐chloroacetylsulfanilamide, and 2‐chloromethyl‐1H‐benzimidazole to produce a series of 2‐(substituted)methylthio‐3‐cyano‐5,6‐dihydro‐4‐(2′‐thienyl)benzo[h]quinolines 4a , 4b , 4c , 4d , 4e and 11 . Upon heating the latter compounds with sodium ethoxide, they underwent intramolecular Thorpe–Zeigler cyclization to furnish the corresponding 2‐(substituted)‐3‐amino‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]thieno[2,3‐b]quinolines 5a , 5b , 5c , 5d , 5e and 12 . (3‐Cyano‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]quinolin‐2‐ylthio)acethydrazide ( 8 ) and the related isomer, 3‐amino‐5,6‐dihydro‐4‐(2′‐thienyl)thieno[2,3‐b]benzo[h]quinoline‐2‐carbohydrazide ( 9 ), were also synthesized. Most of the aforementioned compounds were used as key intermediates for synthesizing other benzo[h]quinolines, benzo[h]thieno[2,3‐b]quinolines as well as benzo[h]pyrimido[4′,5′:4,5] thieno[2,3‐b]quinolines. The structure of all synthesized compounds was confirmed by spectroscopic measurements and analytical analyses.  相似文献   

13.
Activated dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the cyclodimerization of both bis(2‐thienyl)acetylene and bis(3‐thienyl)acetylene to yield, respectively, 4,5,6‐tris(2′‐thienyl)‐benzo[b]thiophene and 5,6,7‐tris(3′‐thienyl)benzo[b]thiophene. These fluoresce in the blue. Both undergo irreversible one electron oxidation at & sim1.1 mV versus Ag/Ag+ electrode, consistent with oxidation of the benzo[b]thiophene nuclei rather than the substituent thiophene rings.  相似文献   

14.
Three metal‐organic coordination polymers, namely {[Cd(L1)(1,2‐chdc)] · 2H2O}n ( 1 ), {[Ni(L2)(1,2‐chdc)] · H2O}n ( 2 ), and [Cd(L2)(npht)]n ( 3 ) [L1 = 1,2‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, L2 = 1,2‐bis(5,6‐dimethylbenzimidazol‐1‐ylmethyl)benzene, 1,2‐H2chdc = 1,2‐cyclohexanedicarboxylic acid, H2npht = 3‐nitrophthalic acid] were synthesized under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction methods, IR spectroscopy, TGA, and elemental analysis. In compound 1 , two 1,2‐chdc2– ligands connect two neighboring Cd atoms to form a dinuclear [Cd2(1,2‐chdc)2] subunit, which is further linked by L1 ligands to construct a 1D ladder‐like chain. Compound 2 exhibits a 2D (4,4) coordination network with {44.62} topology, whilst compound 3 shows a 1D helical chain structure. The fluorescence, UV/Vis diffuse reflection spectra, and catalytic properties of complexes 1 – 3 for the degradation of the congo red azo dye in a Fenton‐like process are investigated.  相似文献   

15.
5,10,15‐Tris(pentafluorophenyl)tetrapyrromethane was efficiently prepared through a route involving stepwise diaroylation of 5‐pentafluorophenyldipyrromethane. A2B6‐type [36]octaphyrins were prepared by the cross condensation of the tetrapyrromethane with aryl aldehydes in moderate yields. A2B6‐type [36]octaphyrins bearing 2,4,6‐trifluorophenyl, 2,6‐dichlorophenyl, and phenyl substituents underwent CuII‐metalation‐induced fragmentation to give two molecules of AB3‐type CuII porphyrins. A2B6‐type [36]octaphyrin bearing 3‐thienyl substituents underwent thermal N‐thienyl fusion reactions to provide a modestly aromatic [38]octaphyrin, which, upon treatment with MnO2, underwent further N‐thienyl fusion and subsequent oxidation to give a nonaromatic doubly N‐thienyl fused [36]octaphyrin.  相似文献   

16.
Sodium and potassium methyl(nitroso)amide (M[CH3N2O], M = Na ( 1 ), K ( 2 )) were prepared by the reaction of monomethylhydrazine with iso‐pentyl nitrite or n‐butyl nitrite and a suitable metal ethoxide (M[CH3CH2O], M = Na, K) in an ethanol‐ether mixture. The reaction of monomethylhydrazine with a small excess of iso‐pentyl nitrite or n‐butyl nitrite and in the absence of a metal ethoxide led to the formation of N‐nitroso‐N‐methylhydrazine (CH3(NO)N–NH2, ( 3 )). Alternatively, compound 3 was prepared by the amination reaction of 1 or 2 using the sodium salt of HOSA in ethanol solution. Compounds 1–3 were characterized using elemental analysis, differential scanning calorimetry, mass spectrometry, vibrational (infrared and Raman) and UV spectroscopy and multinuclear (1H, 13C and 15N) NMR spectroscopy. For compounds 1–3 , several physical and chemical properties of interest and sensitivity data were measured and for compound 3 thermodynamic and explosive properties are also given. Additionally, the solid‐state structure of compound 3 was determined by single‐crystal X‐ray analysis and the structures of the cis‐ and trans‐[CH3N2O] anions and that of 3 were optimized using DFT calculations and used to calculate the NBO charges.  相似文献   

17.
Pyrrolyl and thienyl derived sulfonamides and their metal [cobalt(II), copper(II), nickel(II) and zinc(II)] complexes were synthesized and characterized by elemental analyses, molar conductances, magnetic moments, IR, 1H NMR, 13C NMR and electronic spectral data. These compounds were screened for in‐vitro antibacterial activity against four Gram‐negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram‐positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in‐vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies revealed that all compounds showed significant to moderate antibacterial activity; however, the zinc complexes were shown to be the most active against various species. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties of all the synthesized ligands and their metal complexes. Only two compounds ( 14 and 19 ) displayed potent cytotoxic activity as LD50 = 5.5637 × 10?4 and 4.4023 × 10?4 M ml?1 respectively, against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The efficient nucleophilic addition of aryl Grignard reagents (aryl=4‐MeOC6H4, 4‐Me2NC6H4, Ph, 4‐CF3C6H4, and thienyl) to C60 in the presence of DMSO produced 1,2‐arylhydro[60]fullerenes after acid treatment. The reactions of the anions of these arylhydro[60]fullerenes with either dimethylphenylsilylmethyl iodide or dimethyl(2‐isopropoxyphenyl)silylmethyl iodide yielded the target compounds, 1‐aryl‐4‐silylmethyl[60]fullerenes. The properties and structures of these 1‐aryl‐4‐silylmethyl[60]fullerenes (aryl=4‐MeOC6H4, thienyl) were examined by electrochemical studies, X‐ray crystallography, flash‐photolysis time‐resolved microwave‐conductivity (FP‐TRMC) measurements, and electron‐mobility measurements by using a space‐charge‐limited current (SCLC) model. Organic photovoltaic devices with a polymer‐based bulk heterojunction structure and small‐molecule‐based p–n and pin heterojunction configurations were fabricated by using 1‐aryl‐4‐silylmethyl[60]fullerenes as an electron acceptor. The most efficient device exhibited a power‐conversion efficiency of 3.4 % (short‐circuit current density: 8.1 mA/ cm2, open‐circuit voltage: 0.69 V, fill factor: 0.59).  相似文献   

19.
Two novel alternating π‐conjugated copolymers, poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P1 ) and poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(p‐octylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P2 ), were synthesized via the Suzuki coupling method and their optoelectronic properties were investigated. The resulting polymers P1 and P2 were completely soluble in various common organic solvents and their weight‐average molecular weights (Mw) were 5.66 × 104 (polydispersity: 1.97) and 2.13× 104 (polydispersity: 1.54), respectively. Bulk heterojunction (BHJ) solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5)/TiOx/Al configurations. The BHJ solar cell with P1 :PC70BM (1:5) has a power conversion efficiency (PCE) of 1.12% (Jsc= 3.39 mA/cm2, Voc= 0.67 V, FF = 49.31%), measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. We fabricated polymer light‐emitting diodes (PLEDs) in ITO/PEDOT:PSS/emitting polymer:polyethylene glycol (PEG)/Ba/Al configurations. The electroluminescence (EL) maxima of the fabricated PLEDs varied from 526 nm to 556 nm depending on the ratio of the polymer to PEG. The turn‐on voltages of the PLEDs were in the range of 3–8 V depending on the ratio of the polymer to PEG, and the maximum brightness and luminance efficiency were 2103 cd/m2 and 0.37 cd/A at 12 V, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3169–3177, 2010  相似文献   

20.
Free‐standing poly(5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole) (PETI) was electrochemically obtained from 5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole (ETI) prepared by Stille coupling reaction of 5,7‐dibromoindole and 3,4‐ethylenedioxythiophene. For comparison, poly(5,7‐bis(2‐thiophene)‐indole) was also electrosynthesized from 5,7‐bis(2‐thiophene)‐indole (BTI) which was prepared from the 5,7‐dibromoindole and thiophene. Characterizations of ETI and BTI were performed by cyclic voltammetry, scanning electron microscopy, 1H NMR, and 13C NMR spectroscopy. Spectroelectrochemical studies showed PETI had better electrochromic properties and showed two different colors (brown and blue‐violet) under various potentials with better maximum contrast (ΔT%) and coloration efficiency (CE). An electrochromic device (ECD) based on PETI and poly(3,4‐ethylenedioxythiophene) (PEDOT) was also constructed and characterized. This ECD had fast response time, high CE, better optical memory, and long‐term stability. These results indicated that PETI had potential applications for ECD. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2356–2364  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号